DUALITY OF MULTIPLICATIVE FUNCTIONALS

BY R. K. GETOOR1

Communicated by H. P. McKean, Jr., April 6, 1970

1. Introduction. Suppose X and \hat{X} is a pair of standard processes in duality relative to a Radon measure ξ . We refer the reader to [1] for all terminology and notation not explicitly defined here. In particular (U^{α}) and (\hat{U}^{α}) denote the resolvents of X and \hat{X} respectively and the α -potential kernel $u^{\alpha}(x, y)$ satisfies

$$U^{\alpha}(x, dy) = u^{\alpha}(x, y)dy, \qquad \hat{U}^{\alpha}(x, dy) = u^{\alpha}(y, x)dy.$$

Here $dy = \xi(dy)$. We make no regularity assumptions on the resolvents of X and \hat{X} . One of the most important properties of such dual processes is (VI-1.16) (all such references are to [1]) which states that if A is a Borel set then for all $\alpha \ge 0$ and x, y

$$(1.1) P_A^{\alpha} u^{\alpha}(x, y) = u^{\alpha} \hat{P}_A^{\alpha}(x, y).$$

This result which is due to Hunt says that the process X killed at the time it first hits A and the process \hat{X} killed when it first hits A are in duality. In particular if we define

$$Q_t f(x) = E^x \{ f(X_t); t < T_A \}$$
 and $\hat{Q}_t f(x) = \hat{E}^x \{ f(X_t); t < T_A \}$

(for typographical reasons we will omit the hat "^" in those places where it is obviously required—see the remark on p. 262 of [1]), then it is a standard observation that (1.1) is equivalent to

$$(Q_t f, g) = (f, \hat{Q}_t g)$$

for all $t \ge 0$ and for all continuous functions with compact support, f and g. Here $(\phi, \psi) = \int \phi(x) \psi(x) dx$.

The purpose of this paper is to announce an extension of (1.2) and (1.1) to a more general class of multiplicative functionals than those of the form $M_{\iota} = I_{[0,T_A)}(t)$. Our basic result is that if M is an exact MF (multiplicative functional) of X then there exists a unique exact MF, \hat{M} , of \hat{X} such that (1.2) holds where $\{Q_{\iota}\}$ and $\{\hat{Q}_{\iota}\}$ are the semigroups generated by M and \hat{M} respectively and that an appropriate

AMS 1969 subject classifications. Primary 6062; Secondary 6060.

Key words and phrases. Markov-process, multiplicative functional, dual process, additive functional.

¹ This research was partially sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant AF-AFOSR 1261-67.

analogue of (1.1) also holds. Actually the existence of such an \hat{M} is an easy consequence of a result of Meyer [3] and undoubtedly is known to many people. Our key result is the fact that this correspondence is multiplicative, that is $(MN)^{\hat{}} = \hat{M}\hat{N}$, and it is this fact that turns the above correspondence into a useful tool. In particular this gives a new proof of some recent results of Revuz [4]. Detailed proofs and applications will appear elsewhere.

2. Description of results. Let $M = (M_i)$ be an MF of X; throughout this paper all MF's are assumed to be right continuous, to satisfy $0 \le M_i \le 1$, and to vanish on the interval $[\zeta, \infty]$. Moreover equality between MF's will always mean equivalence. See [1, III-1.6].

Let $Q_t f(x) = E^x \{ f(X_t) M_t \}$ for $t \ge 0$ and

$$V^{\alpha}f(x) = E^{x} \left\{ \int_{0}^{\infty} e^{-\alpha t} f(X_{t}) M_{t} dt \right\}$$

for $\alpha \ge 0$, so that (Q_t) and (V^{α}) denote the semigroup and resolvent generated by M. For each $\alpha \ge 0$, define

$$P_M^{\alpha}f(x) = -E^x \left\{ \int_0^{\infty} e^{-\alpha t} f(X_t) dM_t \right\} \quad \text{if } x \in E_M,$$

$$= f(x) \quad \text{if } x \notin E_M.$$

Here $E_M = \{x: P^x(M_0 = 1) = 1\}$ is the set of permanent points of M. It is well known and easy to check that, at least for $\alpha > 0$,

$$(2.1) U^{\alpha} - V^{\alpha} = P_{M}^{\alpha} U^{\alpha}.$$

From here on we assume that X and \hat{X} are standard processes in duality relative to a Radon measure $\xi(dx) = dx$. Then using standard techniques one obtains a function $v^{\alpha}(x, y)$ such that $V^{\alpha}f(x) = \int v^{\alpha}(x, y)f(y)dy$ and

(2.2)
$$u^{\alpha}(x, y) = v^{\alpha}(x, y) + P_{M}^{\alpha}u^{\alpha}(x, y).$$

If we now define $\hat{V}^{\alpha}f(x) = \int v^{\alpha}(y, x)f(y)dy$, it is easy to check, see Meyer [3], that (\hat{V}^{α}) is a resolvent exactly subordinate to (\hat{U}^{α}) . Consequently it follows from results of Meyer, [3] and [1, III-2.3], that there exists an exact MF, \hat{M} , of \hat{X} which generates (\hat{V}^{α}) . We will write $\hat{P}_{\hat{M}}^{\alpha}$ instead of $\hat{P}_{\hat{M}}^{\alpha}$ for the operator associated with \hat{M} , and $\hat{P}_{\hat{M}}^{\alpha}(dy, x)$ for the corresponding measure. This discussion leads to the following theorem.

(2.3) THEOREM. If M is an exact MF of X, then there exists a unique exact MF, \hat{M} , of \hat{X} such that

$$(2.4) P_M^{\alpha} u^{\alpha}(x, y) = u^{\alpha} \hat{P}_M^{\alpha}(x, y),$$

which is equivalent to $(V^{\alpha}f, g) = (f, \hat{V}^{\alpha}g)$ for all $\alpha > 0$ and $f, g \in C_K^+$. Moreover the mapping $M \to \hat{M}$ is bijective (from the class of exact MF's of X to the class of exact MF's of \hat{X}). If \hat{E}_M is the set of permanent points of \hat{M} , then $E_M \triangle \hat{E}_M$ is semipolar. Also $E_M - \hat{E}_M$ is polar relative to (X, M), and so if M does not vanish on $[0, \zeta)$ then $E - \hat{E}_M$ is polar.

- (2.5) THEOREM. The map $M \to \hat{M}$ is multiplicative in the sense that if M and N are exact MF's of X, then $(MN)^{\hat{}} = \hat{M} \hat{N}$.
- (2.6) COROLLARY. If T is an exact terminal time for X, then there exists a unique exact terminal time \hat{T} for \hat{X} such that for all $\alpha \ge 0$, $P_T^{\alpha}u^{\alpha}(x, y) = u^{\alpha}\hat{P}_T^{\alpha}(x, y)$.

It follows from (1.1) that if A is a Borel set and $T = T_A$ then $\hat{T} = \hat{T}_A$. It is also fairly easy to check that if h is a bounded nonnegative Borel function and $M_i = \exp(-\int_0^i h(\hat{X}_s)ds)$, then $\hat{M}_i = \exp(-\int_0^i h(\hat{X}_s)ds)$. Combining these remarks with (2.5) and using an easy passage to the limit one obtains the full strength of the duality relationships proved by Hunt [2].

Let $S = \inf\{t: M_t = 0\}$ and $\hat{S} = \inf\{t: \hat{M}_t = 0\}$. Then S and \hat{S} are dual terminal times, although they need not be exact. We will say that M is continuous provided $t \rightarrow M_t$ is continuous on [0, S) almost surely, and that M is natural provided $t \rightarrow M_t$ and $t \rightarrow X_t$ have no common discontinuities on [0, S) almost surely. With these definitions we have the following theorem.

(2.7) Theorem. If M is continuous, then \hat{M} is continuous. If M is natural, then \hat{M} is natural.

The following corollaries are closely related to some recent results of Revuz [4].

- (2.8) COROLLARY. Let A be a continuous additive function of X that is finite on $[0, \zeta)$ almost surely, and let $M_{\iota} = \exp[-A_{\iota}]$. Then there is a unique continuous additive functional \hat{A} of \hat{X} restricted to \hat{E}_{M} $(E E_{M}$ is polar in this case) such that $(f, U_{A}^{\alpha}V^{\alpha}g) = (\hat{U}_{A}^{\alpha}\hat{V}^{\alpha}f, g)$.
- In [4] Revuz associates a measure ν_A with any additive functional A.
 - (2.9) COROLLARY. Let A be as in (2.8). Then $\nu_A = \nu_A^2$.

It is known from Revuz's work that ν_A is σ -finite and does not charge semipolar sets for A as above. If, in addition, A has a finite

 α -potential, then $U_A^{\alpha}(x, dy) = u^{\alpha}(x, y)\nu_A(dy)$ for all x and $\hat{U}_A^{\alpha}(x, dy) = \nu_A(dy)u^{\alpha}(y, x)$ for $x \in \hat{E}_M$. These last results can be extended to natural additive functionals under some additional restrictions.

REFERENCES

- 1. R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Academic Press, New York, 1968.
- 2. G. A. Hunt, Markoff processes and potentials. III, Illinois J. Math. 2 (1958), 151-213. MR 21 #5824.
- 3. P. A. Meyer, Semi-groupes en dualité, Séminaire de Théorie du Potentiel, 1960/61, Faculté des Sciences de Paris, Secrétariat mathématique, Paris, 1961. MR 28 #2031.
- 4. D. Revuz, Mesures associées aux fonctionnelles additives de Markov, Trans. Amer. Math. Soc. 148 (1970), 501-531.

University of California, San Diego, California 92037