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Introduction. If X is an infinite dimensional Banach space (or more 
generally, an infinite dimensional manifold), T and S two mappings 
of X into another space F, the typical problems of nonlinear func­
tional analysis ask about the set of points u in X for which T(u) 
— S(u)f or for which T(u) =\S(u) for some real X, or for which 
T(u) =yo for a given y0 in Y. Aside from basic structural hypotheses 
on the classes of mappings T and S considered (i.e. hypotheses that 
one operator or the other is compact, monotone, accretive, nonexpan-
sive, proper, Fredholm, or whatever), in order to obtain nontrivial 
existence results for the desired solutions u> one must impose addi­
tional hypotheses in the large usually in the form of boundary condi­
tions or asymptotic conditions (coerciveness, boundedness of inverse 
mappings, etc.). There is an alternative type of additional hypothesis, 
however, under which one obtains nontrivial results with the bound­
ary or asymptotic conditions weakened or eliminated, namely the 
hypothesis that the nonlinear problem is invariant under a group G 
of transformations acting on the spaces X and Y with G having ele­
ments of finite order. 

In another paper (Browder [5]), we have obtained results on the 
application of the Lusternik-Schnirelman theory to obtain infinitely 
many distinct solutions of the nonlinear eigenvalue problem g'(u) 
=X&'(w), where g' and h' are the Fréchet derivatives of real-valued 
functions g and h on an infinite dimensional Banach space B and the 
usual hypothesis that g and h are even functions is replaced by the 
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hypothesis that for a given transformation group G of B with at least 
one element of finite order and with G having only 0 as a fixed point 
for any nontrivial element, we have g(^>(x)) = g(x), h(cj>(x)) = h(x) 
for any x in B — {o}, </>£G. 

I t is our purpose in the present paper to give an extension within 
this framework of group invariance of the classical Borsuk-Ulam 
theorem which asserts that for an odd mapping of a sphere Sm about 
0 into itself, the degree of the mapping is odd and hence different from 
zero. (For references to some recent infinite dimensional extensions 
and analytical applications of the Borsuk-Ulam theorem, we refer 
to the writer's recent note (Browder [8]).) 

THEOREM 1. Let T be a continuous mapping of Si(Rn) into itself for 
some n^2 (where S\(Rn) is the unit sphere about the origin in Rn). 
Suppose thai there exists a group G of homeomorphisms of Si(Rn) on 
itself such that G has at least one nontrivial element of finite order while 
each nontrivial element of G acts without fixed points on S\(Rn). Suppose 
that for each <f> in G, Tcj>=<pT. 

Then the degree of T is different from zero. 

We derive Theorem 1 from the following slightly more precise 
result: 

THEOREM 2. Let T be a continuous map of S\(Rn) into itself. Suppose 
thai there exists a homeomorphism <f> of S\(Rn) onto itself such that T<fi 
=<j>T while (j)v=the identity f or a given prime p^2, and <j>j acts without 

fixed points on S\(Rn) for 1 <*j<^p — l. 
Then, if d is the degree of T, d^l (mod p)} and d9^0. 

The Borsuk-Ulam theorem corresponds to the case in which </>(x) 
= — x for every x in Si(Rn). Theorem 2 implies Theorem 1 since if T 
and G satisfy the hypotheses of Theorem 1 and if \p is an element of 
order 5 of G, then for any nontrivial prime divisor p of s, cj>=\[/8lP 
satisfies the hypothesis of Theorem 2. 

We may combine the result of Theorem 1 with various generalized 
theories of the topological degree for mappings of infinite dimensional 
Banach spaces (e.g. Browder [3], [4], [ó], [8], Browder-Nussbaum 
[9], Browder-Petryshyn [lO], [ l l ] , Nussbaum [16]), and we obtain 
thereby new existence theorems for a wide variety of nonlinear map­
pings in Banach spaces, as in the following: 

THEOREM 3. Let X be a Banach space, G a convex open subset of X 
which contains the origin, Y the boundary of G in X. Let C be a compact 
mapping of cl(G) into X, (i.e. C maps cl(G) into a relatively compact 
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subset of X and C is continuous). Suppose that there exists a bounded 
linear mapping R of X into X such that R maps Y into cl(G) and for x 
in T, R(C(x)) = C(R(x)), and with the additional property that for some 
prime p ^ 2, Rp = I while for 1 Sj ^ P — 1, Rj has only 0 as a fixed point. 
Suppose that x>*C(x), # £ I \ 

Then deg(J— C, G, 0) = 1 (mod p), and there exists x0 in G such that 
C(x0)=Xo. Moreover, if k0 = dist((I—C)(G), 0 ) > 0 , the closed ball of 
radius k0 about the origin in X is contained in (I — C) (cl(G)). 

Theorem 3 extends the original extension of the Borsuk-Ulam 
theorem to compact maps due to Krasnosel'skiï (cf. [14]) and may be 
carried over under appropriate hypotheses to various classes of non-
compact mappings considered by the writer in [ó] and elsewhere; 
semiaccretive, semicontractive, and in general, mappings defined by 
intertwined representations involving convex classes of maps ob­
tained as the limits of nonsingular mappings. We shall give the de­
tailed statement and discussion of these applications elsewhere, as 
well as the corresponding extension of the generalized degree theory 
based upon approximation schemes of Galerkin type for A -proper 
mappings as developed in Browder-Petryshyn [l0], [ l l ] . We con­
tent ourselves here with the statement of a result useful in applica­
tions to nonlinear elliptic problems: 

THEOREM 4. Let Xbea reflexive separable Banach space, T a pseudo-
monotone mapping of X into X* with X* the conjugate space of X. Sup-
pose that T is finitely continuous {i.e. continuous from each finite dimen­
sional subspace of X to the weak topology of X*) and that there exists a 
bounded linear mapping R of X into X having the property that Rp = I 
for a given prime p^2, with R* not having ( + 1) as an eigenvalue f or 
l g j â t e - 1 ) , such that R*T=TR. (Here, R*:X*-+X* is the adjoint 
operator to R.) 

Let K0 and k0be positive constants such that for\\x\\ = K0, \\T(x)\\ ^k0. 
Then for each w in X* with \\w\\^k0, there exists x in X with \\x\\t&K0 

such that T(x) =w. In particular, if T~l is a bounded mapping of X* 
into X (i.e. maps bounded sets into bounded sets), then the range of T is 
all of X*. 

1. Since, as we have already observed, Theorem 2 implies Theorem 
1, we proceed to the detailed discussion of Theorem 2. We assume 
therefore that for a given prime p^2, we have a periodic homeo-
morphism <f> of Sn for a given n of period p such that for 1 g j ^(p — 1), 
0y acts without fixed points on Sn. Let Yn,G be the quotient space of 
Sn under the action of the cyclic group G of transformations of Sn 

generated by <£,7r3, the quotientmapping. Then 7r is a covering mapping, 
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Yn>o is an ^-dimensional manifold with Sn as its universal covering 
space if n ^ 2. We note that if p?é2, the Lefschetz fixed point theorem 
together with the fixed point-free character of <£;' for l ^ j â ( £ ~ 1) 
implies that if d0 is the degree of <f>, then l + ( —l)ndo = 0 for all such 
j . Hence do = ( — l)n+1

1 d0—dl which implies that n is odd and that 
d0= + 1 . In particular, for p odd, <j> is an orientation-preserving map­
ping and Yn,Q is an orientable w-manifold. If p = 2, d0 — ( — l)n+1 with 
no restriction on n, and 0 is orientation-preserving if and only if n is 
odd. 

We reduce the general case for p = 2 to the orientation-preserving 
case by suspending the mapping ƒ in the following fashion : Take Sn 

to be the unit sphere in Rn+1 and consider the unit sphere Sn+2 in 
Rn+* about the origin. Each element v in Sn+2 may be written uniquely 
in the form v — (ru, r\w) with u in 5 n , w in S2 and r2+r2

x — l> r ^ O , 
r i ^O. Let \f/(v) = (r<t>(u), —riw), g(v) = (ƒ(«), w). Then ^ is an orienta­
tion-preserving involution of 5 n + 2 , g commutes with ^, and the de­
grees of ƒ and g coincide as mappings of Sn and 5 n + 2 , respectively. 
Hence, we need merely prove the assertion of Theorem 2 for g and 
can assume without loss of generality that <f> is orientation-preserving 
in every case and w ^ 2 . 

We consider the singular homology and cohomology groups of Sn 

and Yn,G with coefficients in the integers Z, and in Zp, the integers 
mod p. Since Sn and Yn,G are orientable w-manifolds, Hn(S

n; Z) has a 
single generator ce, and Hn(Yn,G\ Z) has a single generator ai, where 
these generators may be chosen with respect to concordant orienta­
tions so that if ir*n'Hn(S

n; Z)—>Hn(Yn,G', Z) is the homomorphism 
induced by the map TT, then 7r*n(a) =pai. lif*n:Hn(S

n; Z)—>Hn(S
n\ Z) 

is the endomorphism induced by the m a p / , then ƒ*»(«) —da, where d 
is the degree of t}ie mapping ƒ. 

Because ƒ commutes with $, it induces a map h of Yn,G into Fnt<? 
such that Zwr = 7r&. The map A of Yn%Q induces an endomorphism of 
the fundamental group 7n(Fn,0, yo) for a given base point y0 in Fn,<? 
as follows: For a given path C0 from j 0 to A(^o) and for the homotopy 
class [C] of a closed path C with initial and final point at yo, A*([C]) 
= [Cô1h(C)Co]. Since 7Ti(Fn>(?, y0) is isomorphic to the group G of 
covering transformations of the universal covering space Sn of FW,G, 
7TI(FW,G, yo) is abelian. Hence A* is independent of the choice of the 
path Co. Moreover, if we consider the natural homomorphism r\ of 
7Ti(YntGj yo) into H\(YntG\ Z), rj is an isomorphism [13, Theorem 
8.8.3, p. 348]. Since ƒ0 =0 / , it follows by an elementary argument on 
the covering transformations that A* is the identity endomorphism of 
TTi(YntQ,yo). Hence, the endomorphism h*i:Hi(Yn,G; Z)—>Hi(Yn,G; Z) 
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is the identity endomorphism. There is a natural epimorphism of 
H\(Yn,G\ Z) onto Hi(YntG\ Zp) induced by the homomorphism y of 
the coefficient groups which carries each integer z into z mod p. Hence, 
the endomorphism h*\\H\{Yn,G\ Zp)~->H\(YntG\ Zp) is the identity. 
Finally, by Pontrjagin duality, the cohomology endomorphism 
k*l:Hi(YntG] Zp)-^Hl(YntG) Zp) is the identity endomorphism. To 
proceed further, we apply the following well-known result on the 
cohomology ring of Fn,<? with coefficients in Zp: 

LEMMA 1. For p>2, 7 7 * ( F M , G ; ZP) is the quotient of the tensor product 
of an exterior algebra on a one-dimensional element w\ with a polynomial 
algebra on a two-dimensional element w2 by the ideal of elements of 
dimension >n. Here, w2 — — j8(wi), where j3 is the Bockstein homomor­
phism of Hl(Yn,G] Zp) into H2(Yn,G\ Zp) associated with the exact 
sequence, 0—>ZP—>ZP

2—>ZP—»0. 
If p = 2, H*(YniG; Zp) consists of all polynomials in a one-dimen­

sional element wi, module the ideal generated by w"*1. 

PROOF OF LEMMA 1. Lemma 1 is obtained from the consideration of 
the spectral sequence of the covering map ir. For the case where X is 
an infinite-dimensional Banach space and YW>G is the homogeneous 
space associated with the action of G on the unit sphere Si(X), YM,G 
is an Eilenberg-MacLane space K(G, 1) and the corresponding results 
without truncation at dimension n are given in [19, p. 68]. As has 
been pointed out to the writer by A. Liulevicius, if the action of G on 
Sn is differentiate, we can easily imbed Yn,a in an Eilenberg-
MacLane space K(G, 1) such that K(G, 1) — Yn,o is a relative CW 
complex with no cells of dimension ^n. I t follows that the homo-
morphisms Hh(K(G, 1); Zp)—^Hk(YntG] Zp) are isomorphisms for 
k<ny and we get an epimorphism for k=n. In the latter case, both 
groups are isomorphic to Zp and we get an isomorphism there also. 

PROOF OF THEOREM 2 COMPLETED. Since h*:H*(Yn,G; Zp) 
—->i7*(Fn,Gî Zp) is a ring homomorphism, in order to prove that h* is 
the identity homomorphism, it suffices to establish this on its ring 
generators. For wi, h*l(wi) —W\ as we have already noted. Since j3 
commutes with h*, &*'2(w2) =w2. Thus by Lemma 1, h*(w)=w for 
every element w of H*(Yn,Gi Zp). 

If h*>n(a2) =ka2 for a generator a2 of Hn(Yn,G; Z), it follows that 
since the homomorphism induced by y carries Hn(Yn,G, Z) onto 
Hn(Yn,G; Zp)y h*n acts as multiplication by y(k) on Hn(YntG; Zp). 
Hence, y(k) = 1 , (i.e. k = 1 (mod p)). On the other hand, h*n(ai) =ka\. 
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Hence 

h*n(TT*n(0L)) = k*n(p<Xi) = kpOti, 

and 

&Kn (*•*»(«)) = 7r*n(/*n(«)) = w*n(da) = pda%. 

Thus, k—d, and d^l (mod ƒ>). q.e.d. 
REMARK. The only use of Lemma 1 is to establish that h* is the 

identity homomorphism on H*(Yn,G\ ZP)- For the case in which G 
acts differentiably, this can be obtained from the study of the Smith 
homomorphisms, as in the proof of Theorem (7.6) of Chapter 13 of 
[2]. The generalized lens spaces YU,G were considered for special 
actions of G by De Rham [12] (see also [15, pp. 15-16, 180]). 

PROOF OF THEOREM 3. Given €>0, we may construct a finite 
dimensional subspace F of X which is invariant under R and a re­
traction S of cl(C(cl(G))) into F such that | |5(x)~-x| |<€ for x in 
cl(C(cl(G))) and SR = RS. For sufficiently small €, it follows from 
the theory of the Leray-Schauder degree that deg(/—-C, G, 0) 
= deg(7 — SC, GC^Fy 0). On the other hand, the finite dimensional 
mapping SC commutes with R since both S and C do. Applying a 
slight variant of Theorem 2, we find that deg(7 — SC, GC\F, 0 ) = 1 
(mod p). Hence, the result of Theorem 3 follows, q.e.d. 

PROOF OF THEOREM 4. Since X is reflexive and separable, we may 
find an increasing sequence {Fk} of finite dimensional subspaces of 
X such that their union is dense in X while each Fk is invariant under 
the action of the linear map R. Let / be the normalized duality map­
ping of X into X* corresponding to a norm on X in which X is locally 
uniformly convex and X* is strictly convex. For €>0, e sufficiently 
small, T+eJ has no zeroes on the boundary of the ball of radius K0 

about the origin in X, while T+e J is A -proper in the sense of Browder-
Petryshyn [ l l ] with respect to the injective approximation scheme 
defined by the sequence { Fk}. For each k, let jk be the injection map 
of Fk into X, j ^ the adjoint projection map of X* onto F*. Then 
Tk^jkFjk maps Fk into F*, and if we let Rk — R\Fk and R% the ad-
point map of Ft into JP*, then RÎTk = TkRk. If Te,k=jl(T+eJ)jk, 
then for e sufficiently small, 

deg(n , BKQ H Fk, 0) = deg(r6,/c, BKo H Fk, 0). 

By a slight variant of Theorem 2, d e g ^ , BK^Fki 0)^=1 (mod p). 
Hence, deg(T+eJ, Bko, 0) 5̂  {0} for €>0, e sufficiently small, q.e.d. 
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