MODULAR REPRESENTATIONS OF CLASSICAL LIE ALGEBRAS

BY J. E. HUMPHREYS1

Communicated by A. Borel, February 10, 1970

Let K be an algebraically closed field of prime characteristic p. By a classical Lie algebra over K we shall understand a Lie algebra $\mathfrak{g}_{\mathbf{C}}$ by the well-known procedure of Chevalley: see [7] [1], for example. In this note we announce some results on the representation theory of \mathfrak{g} over K; proofs will appear elsewhere. All modules considered will be finite-dimensional and restricted, unless otherwise specified.

0. Preliminaries. Denote by Σ the root system of $\mathfrak{g}_{\mathbb{C}}$ relative to a Cartan subalgebra, and let $\Pi = \{\alpha_1 \cdots \alpha_l\}$ be a simple system. Fix a Chevalley basis $\{X_{\alpha}, \alpha \in \Sigma; H_i, 1 \leq i \leq l\}$ of $\mathfrak{g}_{\mathbb{C}}$; if $\mathfrak{g}_{\mathbb{Z}}$ is the \mathbb{Z} -span of this basis, then $\mathfrak{g} = \mathfrak{g}_{\mathbb{Z}} \otimes K$. For convenience, we also denote by X_{α} , H_i the corresponding elements of \mathfrak{g} . Write $\mathfrak{h} = \mathfrak{h}_{\mathbb{Z}} \otimes K$ (=span of the H_i in \mathfrak{g}). Kostant's theorem [7, §2] describes the \mathbb{Z} -form $\mathfrak{U}_{\mathbb{Z}}$ of the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$ generated by all $X_{\alpha}^m/m!$ $(\alpha \in \Sigma, m \geq 0)$.

If we let V_{λ} be the irreducible \mathfrak{g}_{C} -module of highest weight λ , and let $v_{0} \in V_{\lambda}$ be a maximal vector (a nonzero vector annihilated by all X_{α} , $\alpha \in \Pi$), then $\mathfrak{U}_{Z}v_{0}$ is an "admissible lattice." Tensoring with K yields a (restricted) \mathfrak{g} -module \overline{V}_{λ} , which is also a module for the simply connected Chevalley group G constructed from \mathfrak{g}_{C} over K. If v_{0} again denotes the maximal vector $v_{0} \otimes 1$ in \overline{V}_{λ} , then v_{0} has weight λ .

Let Λ denote the collection of p^l restricted weights λ characterized by the conditions $0 \leq \lambda(H_i) < p$, $1 \leq i \leq l$. For each $\lambda \in \Lambda$ let M_λ be the irreducible \mathfrak{g} -module of highest weight λ ; it is known that M_λ is a homomorphic, but not always isomorphic, image of \overline{V}_λ . The collection $\mathfrak{M} = \{M_\lambda | \lambda \in \Lambda\}$ exhausts the (isomorphism classes of) irreducible \mathfrak{g} -modules. Let \mathfrak{A} , \mathfrak{A} be the restricted universal enveloping algebras of \mathfrak{g} , \mathfrak{h} over K (u-algebras). (Left) \mathfrak{A} -modules correspond precisely to restricted (left) \mathfrak{g} -modules. Every u-algebra is a Frobenius algebra, and \mathfrak{A} is even symmetric.

AMS Subject Classifications. Primary 1730, 1640; Secondary 2080.

Key Words and Phrases. Classical Lie algebra, modular representations, characters, projective modules, blocks, indecomposable modules.

¹ Part of this research was carried out during a stay at the Institute for Advanced Study. I am also grateful to Queen Mary College (London) for their hospitality. Conversations with B. Braden, C. W. Curtis, T. A. Springer have been very helpful.

1. Standard cyclic modules and characters.

DEFINITION. A cyclic g-module, generated by a maximal vector (of weight λ), will be called standard cyclic (of weight λ).

Proposition 1. If $\lambda \in \Lambda$, the g-module \overline{V}_{λ} is standard cyclic of weight λ .

Proposition 2 (Braden). A standard cyclic g-module (restricted or not) is indecomposable and possesses a unique maximal submodule.

In characteristic 0 the "most general" standard cyclic module for $\mathfrak{g}_{\mathcal{C}}$ is always infinite-dimensional [6], [8], [9]. Here we consider the analogue for \mathfrak{g} . If $\{\beta_1, \dots, \beta_m\}$ is the set of positive roots (relative to Π), let X_1, \dots, X_m and Y_1, \dots, Y_m be the corresponding X_{β_i} and $X_{-\beta_i}$, respectively. Let \mathfrak{n} , \mathfrak{n}' be the subalgebras of \mathfrak{g} spanned by the X_i , Y_i respectively, and let \mathfrak{N} , \mathfrak{N}' be their u-algebras. If $\lambda \in \Lambda$, denote by I_λ the left ideal in \mathfrak{n} generated by all X_i ($1 \le i \le m$) and all $H_i - \lambda(H_i) \cdot 1$ ($1 \le i \le l$). Set $Z_\lambda = \mathfrak{n}/I_\lambda$. The canonical map $\mathfrak{n} \to Z_\lambda$ induces a vector space isomorphism of \mathfrak{N}' onto Z_λ : indeed, the coset of 1 in Z_λ is a maximal vector of weight λ , forcing dim $Z_\lambda \le p^m = \dim \mathfrak{N}'$, and on the other hand one can verify that $\mathfrak{N}' \cap I_\lambda = 0$. Moreover, any standard cyclic \mathfrak{g} -module of weight λ is a homomorphic image of this "universal" one.

Next we introduce certain "characters" analogous to those of Harish-Chandra [6, Exposé 19]. Let $\mathfrak E$ be the center of $\mathfrak U$. Since Z_{λ} is indecomposable (Proposition 2), Fitting's Lemma allows one to show that each $C \in \mathfrak E$ acts as a scalar plus a nilpotent; in particular, the function $\chi_{\lambda} : \mathfrak C \to K$ assigning to C its single eigenvalue on Z_{λ} , is a homomorphism of K-algebras. Moreover, $\chi_{\lambda}(C)$ is the single eigenvalue of C on any subhomomorphic image of Z_{λ} , from which we deduce:

PROPOSITION 3. $\chi_{\lambda} = \chi_{\mu}$ if M_{λ} , M_{μ} occur as composition factors of some standard cyclic g-module.

2. Linked weights and blocks.

DEFINITION. Let W be the Weyl group of $\mathfrak{g}_{\mathbf{C}}$, $\rho = \text{half-sum}$ of positive roots. If λ , $\mu \in \Lambda$, viewed as functions on \mathfrak{h} , satisfy: $\lambda + \rho = (\mu + \rho)^{\sigma}$ for some $\sigma \in W$, then we say λ and μ are *linked* and write $\lambda \sim \mu$.

It is clear that linkage is an equivalence relation on Λ , since $(\lambda_{\sigma})_{\tau} = \lambda_{\sigma\tau}$, where we write $\lambda_{\sigma} = (\lambda + \rho)^{\sigma} - \rho$. There is always a linkage class having only one member: take $\lambda = (p-1)\rho$; this weight yields the "Steinberg module" $M_{\lambda} = \overline{V}_{\lambda} = Z_{\lambda}$, the unique irreducible \mathfrak{g} -module of maximal dimension p^{m} . The condition $\lambda \sim \mu$ is analogous to Harish-

Chandra's condition for equality of "characters" in the infinitedimensional case [6, Exposé 19].

THEOREM 1. $\lambda \sim \mu$ implies $\chi_{\lambda} = \chi_{\mu}$.

Although a precise description of the submodules of Z_{λ} is lacking, the following can be shown.

PROPOSITION 4. $\lambda \sim \mu$ implies that Z_{λ} and Z_{μ} have the same composition factors (multiplicities counted). Up to scalar multiples, Z_{λ} has a unique minimal vector, namely, the coset of $Y_1^{p-1} \cdot \cdot \cdot Y_m^{p-1}$ (for any ordering of $Y_1, \cdot \cdot \cdot, Y_m$).

The linkage class of λ is in 1-1 correspondence with the W-orbit of $\lambda + \rho$ in Λ , so Theorem 1 shows there are no more characters than orbits. We can relate this to the blocks of $\mathfrak A$ as well [4, §55]. The distinct (left) principal indecomposable modules (PIM's) of $\mathfrak A$ correspond 1-1 with the elements of $\mathfrak M$: The PIM U_{λ} has unique highest composition factor M_{λ} . Two PIM's are said to be "linked" if they share a composition factor, and the sum of all PIM's in a class of this equivalence relation is an indecomposable two-sided ideal of $\mathfrak A$, called a "block." Let B_{λ} be the block containing U_{λ} . It is easy to see that (under the canonical map $\mathfrak A \to Z_{\lambda}$) some copy of U_{λ} maps onto Z_{λ} , whence every composition factor of Z_{λ} belongs to the block B_{λ} . In view of Theorem 1 and Proposition 4, we can state:

THEOREM 1'. $\lambda \sim \mu$ implies U_{λ} and U_{μ} are linked (so $B_{\lambda} = B_{\mu}$).

This shows that the number t of distinct blocks does not exceed the number of W-orbits in Λ (and each block corresponds to a union of such orbits). Moreover, $t = \dim(\mathbb{C}/\text{rad }\mathbb{C})$, and the χ_{λ} coincide with the homomorphisms $\mathbb{C} \to K$ defined by the respective block idempotents [4, §85 and references].

3. Invariants. In order to prove the converse of Theorem 1 (under some restriction on p) it is necessary to examine more closely how \mathfrak{C} acts on Z_{λ} . There is a natural K-linear map $\beta:\mathfrak{A}\approx\mathfrak{N}'\otimes\mathfrak{K}\otimes\mathfrak{N}\to\mathfrak{K}$ defined by $\beta(YHX)=0$ if Y or X is not 1, $\beta(YHX)=H$ if Y=X=1 ($Y\in\mathfrak{N}', H\in\mathfrak{K}, X\in\mathfrak{N}$ standard basis monomials). If $\lambda\in\Lambda$ is viewed as a K-algebra homomorphism $\mathfrak{K}\to K$, then in view of the way χ_{λ} was defined, we have $\chi_{\lambda}(C)=\lambda(\beta(C)), C\in\mathfrak{C}$, and moreover, $\beta\mid\mathfrak{C}$ is multiplicative. Let γ be the K-algebra automorphism of \mathfrak{K} sending H_i to $H_i-\rho(H_i)$ (ρ as before). Then Theorem 1 implies that $\gamma(\beta(C))$ lies in \mathfrak{K}^W (= algebra of W-invariants in \mathfrak{K}), so dim $\mathfrak{K}^W=t'\geq t$. Now \mathfrak{K}^W is a commutative semisimple associative algebra, and the corresponding t' K-algebra homomorphisms $\mathfrak{K}^W\to K$ are just the restric-

tions to \mathfrak{IC}^{w} of the $\lambda \in \Lambda$, those which are W-conjugate having the same restriction (so t' = number of W-orbits in Λ). To prove the converse of Theorem 1, it would suffice to prove that t = t', or that $\gamma(\beta(C)) = \mathfrak{IC}^{w}$. This seems likely to hold in general, but our method, based on reduction mod ρ , does not work for "small" ρ .

THEOREM 2. If p > Coxeter number of Σ , then $\chi_{\lambda} = \chi_{\mu}$ implies $\lambda \sim \mu$.

REMARK. The Coxeter number h (=order of the product of all simple reflections in W) for each of the simple types is as follows [2, pp. 250-275]: A_l , l+1; B_l , C_l , 2l; D_l , 2l-2; E_6 , 12; E_7 , 18; E_8 , 30; E_4 , 12; E_2 , 6. If p > h, p does not divide the order of W.

4. Projective modules. We recall [4, §56] that the projective \mathfrak{A} -modules are just the direct sums of the PIM's (which are the only indecomposable projectives). It is easy to see that if M is indecomposable and $P \rightarrow M \rightarrow 0$ is a projective cover, then a sum of PIM's from the *same* block already maps onto M. Since every \mathfrak{A} -module has a projective cover, we deduce from Theorem 2:

THEOREM 3. If p > h, then if M is an indecomposable \mathfrak{U} -module, all composition factors of M have highest weights which are linked.

This has been conjectured in general by Verma; Pollack's study of type A_1 , confirms the result directly [5], and Braden's conclusions [3] are highly consistent with it.

In [5] Pollack describes the PIM's for A₁ explicitly. For higher ranks we get some analogous results, the first of which resembles a classical theorem on group algebras of finite groups [4, 65.17].

PROPOSITION 5. Every projective \mathfrak{A} -module is projective as \mathfrak{A}' -module; in particular, each PIM of \mathfrak{A} has dimension divisible by p^m $(m=number\ of\ positive\ roots)$.

PROPOSITION 6. If \mathfrak{B}' is the subalgebra of \mathfrak{A} generated by \mathfrak{F} and \mathfrak{F}' , then every projective \mathfrak{A} -module is a projective \mathfrak{B}' -module. The PIM's of \mathfrak{B}' are just the p^1 modules Z_{λ} ($\lambda \in \Lambda$) regarded as \mathfrak{B}' -modules.

The proof of Proposition 6 is a direct construction in U. Using this result, along with Proposition 4, one can get precise information about dimensions.

THEOREM 4. Let C be the Cartan matrix of \mathfrak{A} ($c_{\lambda\mu}=$ multiplicity of M_{μ} as composition factor of U_{λ}), and let D be the matrix $(d_{\lambda\mu})$, where $d_{\lambda\mu}=$ multiplicity of M_{μ} as a composition factor of Z_{λ} . Whenever the

conclusion of Theorem 3 is valid, $C = {}^{t}D \cdot D$, dim $U_{\lambda} = a_{\lambda}d_{\lambda\lambda}p^{m}$ and dim $B_{\lambda} = a_{\lambda}p^{2m}$, where $a_{\lambda} = cardinality$ of W-orbit of $\lambda + \rho$ in Λ .

REFERENCES

- 1. A. Borel, Properties and linear representations of Chevalley groups, Lecture Notes in Math. no. 131, Springer-Verlag, (to appear).
- 2. N. Bourbaki, Groupes et algèbres de Lie. Chaps. IV-VI, Hermann, Paris, 1969.
- 3. B. Braden, Restricted representations of classical Lie algebras of types A₂ and B₂, Bull. Amer. Math. Soc. 73 (1967), 482-486. MR 35 #1645.
- 4. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. XI, Interscience, New York, 1962. MR 26 #2519.
- 5. R. D. Pollack, Restricted Lie algebras of bounded type, Bull. Amer. Math. Soc. 74 (1968), 326-331. MR 36 #2661.
- 6. Séminaire "Sophus Lie" de L'Ecole Normale Supérieure 1954/55, Théorie des algèbres de Lie, Secrétariat mathématique, Paris, 1955. MR 17, 384.
- 7. R. Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. (mimeograph)
- 8. D.-N. Verma, Structure of certain induced representations of complex semisimple Lie algebras, Dissertation, Yale University, New Haven, Conn., 1966.
- 9. ——, Structure of certain induced representations of complex semisimple Lie algebras, Bull. Amer. Math. Soc. 74 (1968), 160-166. MR 36 #1503.

University of Oregon, Eugene, Oregon 97403

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK, NEW YORK 10012