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Let K be an algebraically closed field of prime characteristic p. 
By a classical Lie algebra over K we shall understand a Lie algebra 
g obtained from a complex simple Lie algebra gç by the well-known 
procedure of Chevalley: see [7] [ l ] , for example. In this note we 
announce some results on the representation theory of g over K\ 
proofs will appear elsewhere. All modules considered will be finite-
dimensional and restricted, unless otherwise specified. 

0. Preliminaries, Denote by 2 the root system of fie relative to a 
Cartan subalgebra, and let 11= {a\ • • • ai} be a simple system. Fix 
a Chevalley basis {Xay « G S ; H^ 1 l^i^l] of gcî if Ôz is the Z-span 
of this basis, then g = %Z®K- For convenience, we also denote by Xa, 
Hi the corresponding elements of g. Write ï) = ï)z®i£ ( = span of the 
Hi in g). Kostant 's theorem [7, §2] describes the Z-form 01^ of the 
universal enveloping algebra of gc generated by all X^/m\ 
( a G S , m^O). 

If we let V\ be the irreducible ge-module of highest weight X, and 
let 7>o£ V\ be a maximal vector (a nonzero vector annihilated by all 
Xa, a £ n ) , then "Mz^o is an "admissible lattice." Tensoring with K 
yields a (restricted) g-module V\, which is also a module for the simply 
connected Chevalley group G constructed from gc over K. If Vo 
again denotes the maximal vector vo® 1 in V\, then VQ has weight X. 

Let A denote the collection of pl restricted weights X characterized 
by the conditions 0 ^X(iT») <p, 1 £i£l. For each X£A let M\ be the 
irreducible g-module of highest weight X; it is known that M\ is a 
homomorphic, but not always isomorphic, image of V\. The collec­
tion 9fïl = { M X | X £ A } exhausts the (isomorphism classes of) ir­
reducible g-modules. Let 'M, 3C be the restricted universal enveloping 
algebras of g, § over K (w-algebras). (Left) ^-modules correspond pre­
cisely to restricted (left) g-modules. Every w-algebra is a Frobenius 
algebra, and «U is even symmetric. 
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1. Standard cyclic modules and characters. 
DEFINITION. A cyclic g-module, generated by a maximal vector 

(of weight X), will be called standard cyclic (of weight X). 

PROPOSITION 1. If X(EA, the %-module V\ is standard cyclic of 
weight X. 

PROPOSITION 2 (BRADEN). A standard cyclic ^-module {restricted 
or not) is indecomposable and possesses a unique maximal submodule. 

In characteristic 0 the "most general" standard cyclic module for 
ge is always infinite-dimensional [6], [8], [9]. Here we consider the 
analogue for Q. If {ft, • • • , @m} is the set of positive roots (relative to 
II), let Xu • * • , Xm and Fi, • • • , Ym be the corresponding X$t and 
X~pi9 respectively. Let n, n' be the subalgebras of g spanned by the 
Xiy Yi respectively, and let 91, 91' be their w-algebras. If X£A, 
denote by J\ the left ideal in ^ generated by all Xi (1 Si^m) and all 
Hi-\(Hi)-l (XSi^l). Set Z\ = %/h. The canonical map Ol-^Zx 
induces a vector space isomorphism of 91' onto Z\\ indeed, the coset 
of 1 in Z\ is a maximal vector of weight X, forcing dim Zxâi>m = dim 
91', and on the other hand one can verify that Ül'OZx — O. Moreover, 
any standard cyclic g-module of weight X is a homomorphic image of 
this "universal" one. 

Next we introduce certain "characters" analogous to those of 
Harish-Chandra [6, Exposé 19]. Let 6 be the center of CU. Since Zx 
is indecomposable (Proposition 2), Fitting's Lemma allows one to 
show tha t each C€EG acts as a scalar plus a nilpotent; in particular, 
the function xx^ ®—>K assigning to C its single eigenvalue on Zx, is a 
homomorphism of i£~algebras. Moreover, x x ( 0 is the single eigen­
value of C on any subhomomorphic image of Zx, from which we 
deduce: 

PROPOSITION 3. xx=X/* if -Wx» ^ occur as composition f actors of 
some standard cyclic ^-module. 

2. Linked weights and blocks. 
DEFINITION. Let W be the Weyl group of gc> P = half-sum of posi­

tive roots. If X, M £ A , viewed as functions on 1), satisfy: X+p =* (M+P)0" 

for some <rÇ: W, then we say X and /x are linked and write X^/x. 
I t is clear tha t linkage is an equivalence relation on A, since (X<r)T 

-\<,T, where we write X , - (X+p)*— p. There is always a linkage class 
having only one member: take X = (p — l)p; this weight yields the 
"Steinberg module" ilfx » Vx - Zx, the unique irreducible g-module of 
maximal dimension pm. The condition X^/x is analogous to Harish-
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Chandra's condition for equality of "characters" in the infinite-
dimensional case [6, Exposé 19]. 

THEOREM 1. X~/x implies xx =x**« 

Although a precise description of the submodules of Z\ is lacking, 
the following can be shown. 

PROPOSITION 4. X^ju implies that Z\ and ZM have the same composi­
tion f actors (multiplicities counted). Up to scalar multiples, Z\ has a 
unique minimal vector, namely, the coset of Y\~x • • • FJT1 (for any 
ordering of Y1} • • • , Fm). 

The linkage class of X is in 1-1 correspondence with the P7-orbit of 
X+p in A, so Theorem 1 shows there are no more characters than 
orbits. We can relate this to the blocks of 01 as well [4, §55]. The 
distinct (left) principal indecomposable modules (PIM's) of ^ cor­
respond 1-1 with the elements of 2flZ: The PI M U\ has unique highest 
composition factor M\. Two PIM's are said to be "linked " if they 
share a composition factor, and the sum of all PIM's in a class of this 
equivalence relation is an indecomposable two-sided ideal of «U, called 
a "block." Let B\ be the block containing U\. I t is easy to see that 
(under the canonical map CU—>Z\) some copy of U\ maps onto Z\, 
whence every composition factor of Z\ belongs to the block B\. In 
view of Theorem 1 and Proposition 4, we can state: 

THEOREM 1'. X~/* implies U\ and Î7M are linked (so B\ = Bll). 

This shows that the number t of distinct blocks does not exceed 
the number of "FF-orbits in À (and each block corresponds to a union of 
such orbits). Moreover, / = dim(G/rad 6), and the xx coincide with 
the homomorphisms G—>K defined by the respective block idem-
potents [4, §85 and references]. 

3. Invariants. In order to prove the converse of Theorem 1 (under 
some restriction on p) it is necessary to examine more closely how G 
acts on Z\. There is a natural X-linear map j S : ^ » 91'®3C® 91—»3C 
defined by j3(Ff lX)=0 if Y or X is not 1, p(YHX) = H if F = X = 1 
( F £ 9 l ' , ÜE3C, X E 9 1 standard basis monomials). If X(EA is viewed 
as a üT-algebra homomorphism 3C—>K, then in view of the way %x 
was defined, we have xx(Q =X(/3(C)), C £ e , and moreover, j3| <3 is 
multiplicative. Let y be the X-algebra automorphism of 3C sending 
Hi to Hi—p(Hi) (p as before). Then Theorem 1 implies that 7(j8(C)) 
lies in 3Q,W ( = algebra of TF-invariants in 3C), so dim ^Zw = tf^U Now 
3CW is a commutative semisimple associative algebra, and the cor­
responding t' X-algebra homomorphisms 3dw—>K are just the res trie-
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tions to 3£w of theX£A, those which are Unconjugate having the same 
restriction (so t' — number of PF-orbits in A). To prove the converse of 
Theorem 1, it would suffice to prove that £ = /', or that 7 (/3(C)) = 3CTF. 
This seems likely to hold in general, but our method, based on reduc­
tion mod p, does not work for "small" p. 

THEOREM 2. If p > Coxeter number of 2 , then %x = X/x implies X~/x. 

REMARK. The Coxeter number h ( = order of the product of all 
simple reflections in W) for each of the simple types is as follows 
[2, pp. 250-275]: Ah l+l; Bh Ch 21; Dh 2Z-2 ; E6, 12; E7, 18; E8, 30; 
Ft, 12; G2, 6. If p>h, p does not divide the order of W. 

4. Projective modules. We recall [4, §56] that the projective 
H-modules are just the direct sums of the PIM's (which are the only 
indecomposable projectives). I t is easy to see that if M is indecom­
posable and P—>ikf—>0 is a projective cover, then a sum of PIM's from 
the same block already maps onto M. Since every ^-module has a 
projective cover, we deduce from Theorem 2: 

THEOREM 3* If p>h, then if M is an indecomposable ^-module, 
all composition factors of M have highest weights which are linked. 

This has been conjectured in general by Verma; Pollack's study of 
type Ai, confirms the result directly [5], and Braden's conclusions 
[3 ] are highly consistent with it. 

In [5] Pollack describes the PIM's for Ai explicitly. For higher 
ranks we get some analogous results, the first of which resembles a 
classical theorem on group algebras of finite groups [4, 65.17]. 

PROPOSITION 5. Every projective ^.-module is projective as 91'-
module; in particular, each PI M of °\l has dimension divisible by pm 

(m = number of positive roots). 

PROPOSITION 6. If <£' is the subalgebra of *U generated by 3C and Sfl', 
then every projective ^-module is a projective (&''-module. The PIM's of 
(B' are just the pl modules Z\ (XGA) regarded as (&'-modules. 

The proof of Proposition 6 is a direct construction in CU. Using this 
result, along with Proposition 4, one can get precise information 
about dimensions. 

THEOREM 4. Let C be the Cartan matrix of °ll (cxM = multiplicity of 
M^ as composition factor of U\), and let D be the matrix (d^), where 
d\ll = multiplicity of ikfM as a composition factor of Z\. Whenever the 
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conclusion of Theorem 3 is valid, C='£>•!), dim U\~a\d\\pm and 
dim B\ = a^p2m

t where a\ = cardinality of W-orbit of X+p in A* 
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