MODULAR REPRESENTATIONS OF CLASSICAL LIE ALGEBRAS BY J. E. HUMPHREYS1 Communicated by A. Borel, February 10, 1970 Let K be an algebraically closed field of prime characteristic p. By a classical Lie algebra over K we shall understand a Lie algebra $\mathfrak{g}_{\mathbf{C}}$ by the well-known procedure of Chevalley: see [7] [1], for example. In this note we announce some results on the representation theory of \mathfrak{g} over K; proofs will appear elsewhere. All modules considered will be finite-dimensional and restricted, unless otherwise specified. 0. Preliminaries. Denote by Σ the root system of $\mathfrak{g}_{\mathbb{C}}$ relative to a Cartan subalgebra, and let $\Pi = \{\alpha_1 \cdots \alpha_l\}$ be a simple system. Fix a Chevalley basis $\{X_{\alpha}, \alpha \in \Sigma; H_i, 1 \leq i \leq l\}$ of $\mathfrak{g}_{\mathbb{C}}$; if $\mathfrak{g}_{\mathbb{Z}}$ is the \mathbb{Z} -span of this basis, then $\mathfrak{g} = \mathfrak{g}_{\mathbb{Z}} \otimes K$. For convenience, we also denote by X_{α} , H_i the corresponding elements of \mathfrak{g} . Write $\mathfrak{h} = \mathfrak{h}_{\mathbb{Z}} \otimes K$ (=span of the H_i in \mathfrak{g}). Kostant's theorem [7, §2] describes the \mathbb{Z} -form $\mathfrak{U}_{\mathbb{Z}}$ of the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$ generated by all $X_{\alpha}^m/m!$ $(\alpha \in \Sigma, m \geq 0)$. If we let V_{λ} be the irreducible \mathfrak{g}_{C} -module of highest weight λ , and let $v_{0} \in V_{\lambda}$ be a maximal vector (a nonzero vector annihilated by all X_{α} , $\alpha \in \Pi$), then $\mathfrak{U}_{Z}v_{0}$ is an "admissible lattice." Tensoring with K yields a (restricted) \mathfrak{g} -module \overline{V}_{λ} , which is also a module for the simply connected Chevalley group G constructed from \mathfrak{g}_{C} over K. If v_{0} again denotes the maximal vector $v_{0} \otimes 1$ in \overline{V}_{λ} , then v_{0} has weight λ . Let Λ denote the collection of p^l restricted weights λ characterized by the conditions $0 \leq \lambda(H_i) < p$, $1 \leq i \leq l$. For each $\lambda \in \Lambda$ let M_λ be the irreducible \mathfrak{g} -module of highest weight λ ; it is known that M_λ is a homomorphic, but not always isomorphic, image of \overline{V}_λ . The collection $\mathfrak{M} = \{M_\lambda | \lambda \in \Lambda\}$ exhausts the (isomorphism classes of) irreducible \mathfrak{g} -modules. Let \mathfrak{A} , \mathfrak{A} be the restricted universal enveloping algebras of \mathfrak{g} , \mathfrak{h} over K (u-algebras). (Left) \mathfrak{A} -modules correspond precisely to restricted (left) \mathfrak{g} -modules. Every u-algebra is a Frobenius algebra, and \mathfrak{A} is even symmetric. AMS Subject Classifications. Primary 1730, 1640; Secondary 2080. Key Words and Phrases. Classical Lie algebra, modular representations, characters, projective modules, blocks, indecomposable modules. ¹ Part of this research was carried out during a stay at the Institute for Advanced Study. I am also grateful to Queen Mary College (London) for their hospitality. Conversations with B. Braden, C. W. Curtis, T. A. Springer have been very helpful. ## 1. Standard cyclic modules and characters. DEFINITION. A cyclic g-module, generated by a maximal vector (of weight λ), will be called standard cyclic (of weight λ). Proposition 1. If $\lambda \in \Lambda$, the g-module \overline{V}_{λ} is standard cyclic of weight λ . Proposition 2 (Braden). A standard cyclic g-module (restricted or not) is indecomposable and possesses a unique maximal submodule. In characteristic 0 the "most general" standard cyclic module for $\mathfrak{g}_{\mathcal{C}}$ is always infinite-dimensional [6], [8], [9]. Here we consider the analogue for \mathfrak{g} . If $\{\beta_1, \dots, \beta_m\}$ is the set of positive roots (relative to Π), let X_1, \dots, X_m and Y_1, \dots, Y_m be the corresponding X_{β_i} and $X_{-\beta_i}$, respectively. Let \mathfrak{n} , \mathfrak{n}' be the subalgebras of \mathfrak{g} spanned by the X_i , Y_i respectively, and let \mathfrak{N} , \mathfrak{N}' be their u-algebras. If $\lambda \in \Lambda$, denote by I_λ the left ideal in \mathfrak{n} generated by all X_i ($1 \le i \le m$) and all $H_i - \lambda(H_i) \cdot 1$ ($1 \le i \le l$). Set $Z_\lambda = \mathfrak{n}/I_\lambda$. The canonical map $\mathfrak{n} \to Z_\lambda$ induces a vector space isomorphism of \mathfrak{N}' onto Z_λ : indeed, the coset of 1 in Z_λ is a maximal vector of weight λ , forcing dim $Z_\lambda \le p^m = \dim \mathfrak{N}'$, and on the other hand one can verify that $\mathfrak{N}' \cap I_\lambda = 0$. Moreover, any standard cyclic \mathfrak{g} -module of weight λ is a homomorphic image of this "universal" one. Next we introduce certain "characters" analogous to those of Harish-Chandra [6, Exposé 19]. Let $\mathfrak E$ be the center of $\mathfrak U$. Since Z_{λ} is indecomposable (Proposition 2), Fitting's Lemma allows one to show that each $C \in \mathfrak E$ acts as a scalar plus a nilpotent; in particular, the function $\chi_{\lambda} : \mathfrak C \to K$ assigning to C its single eigenvalue on Z_{λ} , is a homomorphism of K-algebras. Moreover, $\chi_{\lambda}(C)$ is the single eigenvalue of C on any subhomomorphic image of Z_{λ} , from which we deduce: PROPOSITION 3. $\chi_{\lambda} = \chi_{\mu}$ if M_{λ} , M_{μ} occur as composition factors of some standard cyclic g-module. ## 2. Linked weights and blocks. DEFINITION. Let W be the Weyl group of $\mathfrak{g}_{\mathbf{C}}$, $\rho = \text{half-sum}$ of positive roots. If λ , $\mu \in \Lambda$, viewed as functions on \mathfrak{h} , satisfy: $\lambda + \rho = (\mu + \rho)^{\sigma}$ for some $\sigma \in W$, then we say λ and μ are *linked* and write $\lambda \sim \mu$. It is clear that linkage is an equivalence relation on Λ , since $(\lambda_{\sigma})_{\tau} = \lambda_{\sigma\tau}$, where we write $\lambda_{\sigma} = (\lambda + \rho)^{\sigma} - \rho$. There is always a linkage class having only one member: take $\lambda = (p-1)\rho$; this weight yields the "Steinberg module" $M_{\lambda} = \overline{V}_{\lambda} = Z_{\lambda}$, the unique irreducible \mathfrak{g} -module of maximal dimension p^{m} . The condition $\lambda \sim \mu$ is analogous to Harish- Chandra's condition for equality of "characters" in the infinitedimensional case [6, Exposé 19]. THEOREM 1. $\lambda \sim \mu$ implies $\chi_{\lambda} = \chi_{\mu}$. Although a precise description of the submodules of Z_{λ} is lacking, the following can be shown. PROPOSITION 4. $\lambda \sim \mu$ implies that Z_{λ} and Z_{μ} have the same composition factors (multiplicities counted). Up to scalar multiples, Z_{λ} has a unique minimal vector, namely, the coset of $Y_1^{p-1} \cdot \cdot \cdot Y_m^{p-1}$ (for any ordering of $Y_1, \cdot \cdot \cdot, Y_m$). The linkage class of λ is in 1-1 correspondence with the W-orbit of $\lambda + \rho$ in Λ , so Theorem 1 shows there are no more characters than orbits. We can relate this to the blocks of $\mathfrak A$ as well [4, §55]. The distinct (left) principal indecomposable modules (PIM's) of $\mathfrak A$ correspond 1-1 with the elements of $\mathfrak M$: The PIM U_{λ} has unique highest composition factor M_{λ} . Two PIM's are said to be "linked" if they share a composition factor, and the sum of all PIM's in a class of this equivalence relation is an indecomposable two-sided ideal of $\mathfrak A$, called a "block." Let B_{λ} be the block containing U_{λ} . It is easy to see that (under the canonical map $\mathfrak A \to Z_{\lambda}$) some copy of U_{λ} maps onto Z_{λ} , whence every composition factor of Z_{λ} belongs to the block B_{λ} . In view of Theorem 1 and Proposition 4, we can state: THEOREM 1'. $\lambda \sim \mu$ implies U_{λ} and U_{μ} are linked (so $B_{\lambda} = B_{\mu}$). This shows that the number t of distinct blocks does not exceed the number of W-orbits in Λ (and each block corresponds to a union of such orbits). Moreover, $t = \dim(\mathbb{C}/\text{rad }\mathbb{C})$, and the χ_{λ} coincide with the homomorphisms $\mathbb{C} \to K$ defined by the respective block idempotents [4, §85 and references]. 3. Invariants. In order to prove the converse of Theorem 1 (under some restriction on p) it is necessary to examine more closely how \mathfrak{C} acts on Z_{λ} . There is a natural K-linear map $\beta:\mathfrak{A}\approx\mathfrak{N}'\otimes\mathfrak{K}\otimes\mathfrak{N}\to\mathfrak{K}$ defined by $\beta(YHX)=0$ if Y or X is not 1, $\beta(YHX)=H$ if Y=X=1 ($Y\in\mathfrak{N}', H\in\mathfrak{K}, X\in\mathfrak{N}$ standard basis monomials). If $\lambda\in\Lambda$ is viewed as a K-algebra homomorphism $\mathfrak{K}\to K$, then in view of the way χ_{λ} was defined, we have $\chi_{\lambda}(C)=\lambda(\beta(C)), C\in\mathfrak{C}$, and moreover, $\beta\mid\mathfrak{C}$ is multiplicative. Let γ be the K-algebra automorphism of \mathfrak{K} sending H_i to $H_i-\rho(H_i)$ (ρ as before). Then Theorem 1 implies that $\gamma(\beta(C))$ lies in \mathfrak{K}^W (= algebra of W-invariants in \mathfrak{K}), so dim $\mathfrak{K}^W=t'\geq t$. Now \mathfrak{K}^W is a commutative semisimple associative algebra, and the corresponding t' K-algebra homomorphisms $\mathfrak{K}^W\to K$ are just the restric- tions to \mathfrak{IC}^{w} of the $\lambda \in \Lambda$, those which are W-conjugate having the same restriction (so t' = number of W-orbits in Λ). To prove the converse of Theorem 1, it would suffice to prove that t = t', or that $\gamma(\beta(C)) = \mathfrak{IC}^{w}$. This seems likely to hold in general, but our method, based on reduction mod ρ , does not work for "small" ρ . THEOREM 2. If p > Coxeter number of Σ , then $\chi_{\lambda} = \chi_{\mu}$ implies $\lambda \sim \mu$. REMARK. The Coxeter number h (=order of the product of all simple reflections in W) for each of the simple types is as follows [2, pp. 250-275]: A_l , l+1; B_l , C_l , 2l; D_l , 2l-2; E_6 , 12; E_7 , 18; E_8 , 30; E_4 , 12; E_2 , 6. If p > h, p does not divide the order of W. 4. Projective modules. We recall [4, §56] that the projective \mathfrak{A} -modules are just the direct sums of the PIM's (which are the only indecomposable projectives). It is easy to see that if M is indecomposable and $P \rightarrow M \rightarrow 0$ is a projective cover, then a sum of PIM's from the *same* block already maps onto M. Since every \mathfrak{A} -module has a projective cover, we deduce from Theorem 2: THEOREM 3. If p > h, then if M is an indecomposable \mathfrak{U} -module, all composition factors of M have highest weights which are linked. This has been conjectured in general by Verma; Pollack's study of type A_1 , confirms the result directly [5], and Braden's conclusions [3] are highly consistent with it. In [5] Pollack describes the PIM's for A₁ explicitly. For higher ranks we get some analogous results, the first of which resembles a classical theorem on group algebras of finite groups [4, 65.17]. PROPOSITION 5. Every projective \mathfrak{A} -module is projective as \mathfrak{A}' -module; in particular, each PIM of \mathfrak{A} has dimension divisible by p^m $(m=number\ of\ positive\ roots)$. PROPOSITION 6. If \mathfrak{B}' is the subalgebra of \mathfrak{A} generated by \mathfrak{F} and \mathfrak{F}' , then every projective \mathfrak{A} -module is a projective \mathfrak{B}' -module. The PIM's of \mathfrak{B}' are just the p^1 modules Z_{λ} ($\lambda \in \Lambda$) regarded as \mathfrak{B}' -modules. The proof of Proposition 6 is a direct construction in U. Using this result, along with Proposition 4, one can get precise information about dimensions. THEOREM 4. Let C be the Cartan matrix of \mathfrak{A} ($c_{\lambda\mu}=$ multiplicity of M_{μ} as composition factor of U_{λ}), and let D be the matrix $(d_{\lambda\mu})$, where $d_{\lambda\mu}=$ multiplicity of M_{μ} as a composition factor of Z_{λ} . Whenever the conclusion of Theorem 3 is valid, $C = {}^{t}D \cdot D$, dim $U_{\lambda} = a_{\lambda}d_{\lambda\lambda}p^{m}$ and dim $B_{\lambda} = a_{\lambda}p^{2m}$, where $a_{\lambda} = cardinality$ of W-orbit of $\lambda + \rho$ in Λ . ## REFERENCES - 1. A. Borel, Properties and linear representations of Chevalley groups, Lecture Notes in Math. no. 131, Springer-Verlag, (to appear). - 2. N. Bourbaki, Groupes et algèbres de Lie. Chaps. IV-VI, Hermann, Paris, 1969. - 3. B. Braden, Restricted representations of classical Lie algebras of types A₂ and B₂, Bull. Amer. Math. Soc. 73 (1967), 482-486. MR 35 #1645. - 4. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. XI, Interscience, New York, 1962. MR 26 #2519. - 5. R. D. Pollack, Restricted Lie algebras of bounded type, Bull. Amer. Math. Soc. 74 (1968), 326-331. MR 36 #2661. - 6. Séminaire "Sophus Lie" de L'Ecole Normale Supérieure 1954/55, Théorie des algèbres de Lie, Secrétariat mathématique, Paris, 1955. MR 17, 384. - 7. R. Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. (mimeograph) - 8. D.-N. Verma, Structure of certain induced representations of complex semisimple Lie algebras, Dissertation, Yale University, New Haven, Conn., 1966. - 9. ——, Structure of certain induced representations of complex semisimple Lie algebras, Bull. Amer. Math. Soc. 74 (1968), 160-166. MR 36 #1503. University of Oregon, Eugene, Oregon 97403 COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK, NEW YORK 10012