MODULAR REPRESENTATIONS OF
CLASSICAL LIE ALGEBRAS
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Let K be an algebraically closed field of prime characteristic p.
By a classical Lie algebra over K we shall understand a Lie algebra
g obtained from a complex simple Lie algebra g¢ by the well-known
procedure of Chevalley: see [7] [1], for example. In this note we
announce some results on the representation theory of g over K;
proofs will appear elsewhere. All modules considered will be finite-
dimensional and restricted, unless otherwise specified.

0. Preliminaries. Denote by 2 the root system of g¢ relative to a
Cartan subalgebra, and let II={q; - - - a;} be a simple system. Fix
a Chevalley basis {Xa, aEZ; H, 1 §i_$_l} of gc; if gz is the Z-span
of this basis, then g =gz® K. For convenience, we also denote by X,,
H; the corresponding elements of g. Write h=0z® K (=span of the
H; in g). Kostant’s theorem [7, §2] describes the Z-form Uz of the
universal enveloping algebra of g¢ generated by all X3 /m!
(€2, mz=0).

If we let V5 be the irreducible gc-module of highest weight N\, and
let »o& V> be a maximal vector (a nonzero vector annihilated by all
X., a&I0), then Uzv, is an “admissible lattice.” Tensoring with K
yields a (restricted) g-module ¥V, which is also a module for the simply
connected Chevalley group G constructed from g¢ over K. If 9,
again denotes the maximal vector vo®1 in V,, then v, has weight \.

Let A denote the collection of p! restricted weights N characterized
by the conditions 0 S\(H;) <p, 1 =< =!. For each NEA let M, be the
irreducible g-module of highest weight \; it is known that M, is a
homomorphic, but not always isomorphic, image of V. The collec-
tion M= {MXIXEA} exhausts the (isomorphism classes of) ir-
reducible g-modules. Let U, 3C be the restricted universal enveloping
algebras of g, ) over K (u-algebras). (Left) U-modules correspond pre-
cisely to restricted (left) g-modules. Every u-algebra is a Frobenius
algebra, and U is even symmetric.
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1. Standard cyclic modules and characters.
DEFINITION. A cyclic g-module, generated by a maximal vector
(of weight \), will be called standard cyclic (of weight \).

ProposITION 1. If NEA, the g-module V» is standard cyclic of
weight M.

ProprosITION 2 (BRADEN). A standard cyclic g-module (restricted
or not) is indecomposable and possesses a unique maximal submodule.

In characteristic 0 the “most general” standard cyclic module for
gc is always infinite-dimensional [6], [8], [9]. Here we consider the
analogue for g. If {8y, * + -, ﬁm} is the set of positive roots (relative to
II), let Xy, + + -, Xmand V3, « + +, ¥y be the corresponding X, and
X s, respectively. Let n, n’ be the subalgebras of g spanned by the
X, Y; respectively, and let 9T, 91 be their wu-algebras, If NEA,
denote by I, the left ideal in AU generated by all X; (1 7<) and all
H—N\(H;)-1 (1=51=5]). Set Zn=U/I». The canonical map U—Z)
induces a vector space isomorphism of 91 onto Z,: indeed, the coset
of 1in Z, is a maximal vector of weight A, forcing dim Z) £ p™=dim
9/, and on the other hand one can verify that 9N, =0. Moreover,
any standard cyclic g-module of weight A is a homomorphic image of
this “universal” one.

Next we introduce certain “characters” analogous to those of
Harish-Chandra [6, Exposé 19]. Let @ be the center of U. Since Zy
is indecomposable (Proposition 2), Fitting’s Lemma allows one to
show that each C& @ acts as a scalar plus a nilpotent; in particular,
the function x): @—K assigning to C its single eigenvalue on 2, is a
homomorphism of K-algebras. Moreover, x,(C) is the single eigen-
value of C on any subhomomorphic image of Z,, from which we
deduce:

ProrosITION 3. xa=x. &f My, M, occur as composition factors of
some standard cyclic g-module.

2. Linked weights and blocks.

DEFINITION. Let W be the Weyl group of g¢, p=half-sum of posi-
tive roots. If A, u €A, viewed as functions on §, satisfy: N+4p = (u+p)°
for some ¢ & W, then we say N and u are linked and write A~p.

It is clear that linkage is an equivalence relation on A, since (\o)-
=Ny, where we write N, = (A +p)° —p. There is always a linkage class
having only one member: take A= (p —1)p; this weight yields the
“Steinberg module” My = V> = Z,, the unique irreducible g-module of
maximal dimension p™. The condition A~y is analogous to Harish-
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Chandra’s condition for equality of “characters” in the infinite-
dimensional case [6, Exposé 19].

THEOREM 1. A~u implies xn =Xu.

Although a precise description of the submodules of Z, is lacking,
the following can be shown.

PROPOSITION 4. A~ implies that Z\ and Z, have the same composi-
tion factors (multiplicities counted). Up to scalar multiples, Z\ has a
unique minimal vector, namely, the coset of Yi~' - - . Y21 (for any
ordering of Y1, + + -, V).

The linkage class of A is in 1-1 correspondence with the W-orbit of
A+p in A, so Theorem 1 shows there are no more characters than
orbits. We can relate this to the blocks of U as well [4, §55]. The
distinct (left) principal indecomposable modules (PIM’s) of U cor-
respond 1-1 with the elements of 9: The PIM U, has unique highest
composition factor M. Two PIM’s are said to be “linked” if they
share a composition factor, and the sum of all PIM’s in a class of this
equivalence relation is an indecomposable two-sided ideal of U, called
a “block.” Let B, be the block containing U,. It is easy to see that
(under the canonical map U—Z,) some copy of U, maps onto Z,,
whence every composition factor of Zy belongs to the block B,. In
view of Theorem 1 and Proposition 4, we can state:

THEOREM 1. A~u implies Uy and U, are linked (so By=B,).

This shows that the number ¢ of distinct blocks does not exceed
the number of W-orbits in A (and each block corresponds to a union of
such orbits). Moreover, t=dim(@€/rad @), and the x» coincide with
the homomorphisms @—K defined by the respective block idem-
potents [4, §85 and references].

3. Invariants. In order to prove the converse of Theorem 1 (under
some restriction on p) it is necessary to examine more closely how @
acts on Z. There is a natural K-linear map B:U= 9N’ QIR N—IC
defined by B(YHX)=01if Yor Xisnot 1, B3(YHX)=H if Y=X=1
(YEN, HE3, X EN standard basis monomials). If NEA is viewed
as a K-algebra homomorphism 3¢—XK, then in view of the way x
was defined, we have x\(C) =\({3((C)), CEe, and moreover, BI Cis
multiplicative. Let v be the K-algebra automorphism of 3¢ sending
H; to H;—p(H;) (p as before). Then Theorem 1 implies that y(8(C))
lies in 3¢% (=algebra of W-invariants in 3C), so dim 3% =¢'=¢. Now
37 is a commutative semisimple associative algebra, and the cor-
responding ¢’ K-algebra homomorphisms 3¢7 —K are just the restric-
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tions to 3% of the NEA, those which are W-conjugate having the same
restriction (so ¢’ =number of W-orbits in A). To prove the converse of
Theorem 1, it would suffice to prove that ¢ ={’, or that y(8(C)) = 3c¥.
This seems likely to hold in general, but our method, based on reduc-
tion mod p, does not work for “small” p.

THEOREM 2. If p > Coxeter number of Z, then xn =X, implies \~p.

ReEMARK. The Coxeter number 2 (=order of the product of all
simple reflections in W) for each of the simple types is as follows
[2, pp. 250-275]: A4, 14+1; By, Cy, 21; Dy, 21—2; By, 12; Ey, 18; Es, 30;
Fy, 12; Go, 6. If p>h, p does not divide the order of W.

4. Projective modules. We recall [4, §56] that the projective
a-modules are just the direct sums of the PIM’s (which are the only
indecomposable projectives). It is easy to see that if M is indecom-
posable and P— M —0 is a projective cover, then a sum of PIM’s from
the same block already maps onto M. Since every U-module has a
projective cover, we deduce from Theorem 2:

THEOREM 3. If p>h, then if M is an indecomposable U-module,
all composition factors of M have highest weights which are linked.

This has been conjectured in general by Verma; Pollack’s study of
type Aj, confirms the result directly [5], and Braden’s conclusions
[3] are highly consistent with it.

In [5] Pollack describes the PIM’s for A; explicitly. For higher
ranks we get some analogous results, the first of which resembles a
classical theorem on group algebras of finite groups [4, 65.17].

ProPOSITION 5. Every projeciive U-module is projective as IN'-
module; in pariicular, each PIM of U has dimension divisible by pm™
(m =number of positive roots).

ProrosiTION 6. If ®' is the subalgebra of AU generated by 3C and I,
then every projective WU-module is a projective ®&'-module. The PIM's of
®' are just the p* modules Z, (NEA) regarded as ®'-modules.

The proof of Proposition 6 is a direct construction in U. Using this
result, along with Proposition 4, one can get precise information
about dimensions.

THEOREM 4. Let C be the Cartan matrix of W (ons =multiplicity of
M, as composition factor of U,), and let D be the matrix (dy.), where
Ay =multiplicity of M, as a composition factor of Zx. Whenever the
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conclusion of Theorem 3 is valid, C=!D-D, dim U,=adnp™ and
dim By =ap?™, where a, = cardinality of W-orbit of N-+p in A.
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