
HOLDER AND & ESTIMATES FOR SOLUTIONS OF du=f 
IN STRONGLY PSEUDOCONVEX DOMAINS1 

BY NORBERTO KERZMAN 

Communicated by J. J. Kohn, December 5, 1969 

1. Introduction. A recent result due to H. Grauert and I. Lieb 
[l] asserts that if G is a strongly pseudoconvex domain with smooth 
boundary, G C O , and if ƒ = ]£?-i ƒ/ dzj is a C°, (0, 1) form in G, 
d / = 0 , ƒ bounded, then the equation du=f has a solution u:G—>C 
such that sup*e<? | u(z) \ ^Csupzea | ƒ(*) | , where | ƒ(*) | = X X x | ƒ,(*) | . 
Grauert and Lieb's theorem is proved by writing a solution u in the 
form u(w) =/oK(2, w)/\f(z)f w £ G and then estimating the kernel to 
obtain fa\Q(z, w)\dz£A<<x>, A independent of wÇ-G. The kernel 
Q(s, «;) is the one constructed by E. Ramirez in [ö] who employed it 
to obtain an integral representation formula for holomorphic func­
tions. Ramirez* construction of 0(0, w) involves the application of 
Cartan's theorem B for vector valued functions as well as a division 
theorem which he proves in [ó]. 

We have found an alternate approach using Hörmander's L2 esti­
mates which yields a somewhat simpler proof: We first determine 
(Theorem L) a local solution by the same method as in Grauert and 
Lieb's paper. In this local case, however, a kernel Q(s, w) can be writ­
ten explicitly. Our passage from local to global then uses only 
Hörmander's L2 estimates for the d problem. By this method we ob­
tain a stronger result, namely a solution u satisfying a Holder condi­
tion with any exponent a, a < 1/2, up to the boundary of G (Theorem 
1). The method also yields (Theorem 2) solutions in Z> whenever 
fÇzLp, 1 SP S °° ; this is not an interpolation result even for 2 ̂ p g oo 
(see remarks following Theorem 2). 

As an application of Grauert-Lieb's theorem we prove (Theorem 3) 
that holomorphic functions which are continuous up to the boundary 
of G can be uniformly approximated on G by holomorphic functions 
defined in a neighborhood of G. This result has been proved inde­
pendently and a t about the same time by I. Lieb [5] using the 
Ramirez integral formula. 
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2. In the sequel G stands for a strongly pseudoconvex domain 
GQCn with smooth C4 boundary, i.e. G is open, G is compact and 
there exists an open neighborhood U of dG and a C4 function X: U-+R 
such that Gr\U={zEU} X(s)<0};X is a strictly plurisubharmonic 
function, i.e. ]Cu-i (d2\/dzidzj)(z) MtMî -4 (2) |/x|2 for all s££7 and 
M G O ; here ^(2)>0. The gradient VX(2)7*0 in £/. 

THEOREM 1. Let G be a strongly pseudoconvex domain GQCn with 
smooth CA boundary and let f be a C00, (0, 1) form defined in G, ~èf=0, ƒ 
bounded. There exists a solution u of the equation du =ƒ in G such that 

I u(w) — u(w') I . . 
(1) sup 1-JLJ. i-LL £C« sup ^(w) , a < i 

w,weG \W — w'\a weQ 
where a is any number a<l/2 and Ca is independent off. 

COROLLARY 1. If G and f are as in Theorem 1, then there is a solution 
u of du =ƒ which is continuous up to the boundary of G (even though f is 
defined in G and need not be continuous in G). 

REMARKS. The solution u we obtain depends linearly on ƒ. The con­
stant Ca is independent of G for small C4 perturbations of G. It is well 
known that if n~ 1, then (1) holds with any exponent a < l . 

THEOREM 2. Let G be as in Theorem 1, and let fbeaC™, (0,1) form 
in Gt df=0, fÇ^Lp(G), 1 â £ â 00. There exists a solution u of ~du =ƒ in 
G such that 

(2) NU'CG) g *||/|U*(<7), 1 £p^ <». 

The remarks above also apply here, with Ca replaced by c\ c is in­
dependent of p. 

For p — 2, (2) are the well-known J . J . Kohn or L. Hörmander L2 

estimates [3], [4], [2]. The case £ = 00 is Grauert-Lieb's theorem. 
The intermediate cases 2^p^ 00 cannot be obtained by interpola­
tion of these two known results because the operator which gives the 
solution u in Grauert-Lieb's paper differs from Kohn's and from 
Hörmander's. In Theorems 1 and 2 the operators T giving the solu­
tion u — Tf all agree, so there is really only one operator T involved. 
However the computation which shows that T is continuous from L2 

to L2 and from D° to L00 also shows at the same time that T is con­
tinuous from Lp to Z>, 2 ^p g 00. 

3. Proofs. Both Theorems 1 and 2 are obtained from their "local" 
versions 1 1 and 2L (which are lumped together as Theorem L below) 
via an application of Hörmander's L2 estimates for the d problem. 
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Let Ba(q) denote the ball of center qÇ-Cn and radius a. 

THEOREM L. Let G and f be as in Theorem 2. There exist positive num­
bers a, cr> C^jindependent of f, such that in any set GC\Ba(q), q&G, 
the equation du=*f has a solution u\GC\Ba{q)--*C satisfying 

(2L) IN|j^(on^(g)) £ c'\\f\\L*<Q), 1 S p â oo. 

If p = oo, u satisfies j in addition, 

, v I #(w) — u(w') I /„ M 

(11) sup LJLl l ^ J . <; d ^U-(G), « < 1/2, 

wftere a is any number, a< 1/2. 

REMARK. The solution w is linear in/ ; a, c', C« are independent of G 
for small C4 perturbations of G; a and c' are independent of p, \Sp 
g o o . 

Theorem L is proved (see Introduction) by explicitly constructing 
a kernel Q(s, w), zÇiBia{q)r\G, wÇ~Ba(q)r\G, a small, which gives a 
solution u of the form 

(3) u{w) = f 0(2, w) A ƒ(*), w G G H J5.(j). 
•J «6(?nB2o(g) 

Then (11) and (2L) are proved by direct (though nontrivial) estima­
tions in (3). 

Theorem L enables us to make quantitative a well-known extension 
trick (Lemma 1) which in turn implies Theorems 1 and 2 (using L2 

estimates for solutions of du=f). 

LEMMA 1. Let G be as in Theorem 2. There exists a {slightly bigger) 
strongly pseudoconvex domain ô, GQGÇZÔ, having the following prop­
erty: for any form f as in Theorem 2 there exists a C°°, (0, 1) form f in G 
and a C™ f unction x:G—>C such that df—O in ô,?=f+dx in G and 

(4) \\J\\»fi>£S'\\j\\*m> l^p£ " , 
(5) \\x\\z?<G)£cr'\\j\\ifiiGh l ^ ^ o o , 

If pxx oo, x satisfies, in addition, 

(6) sup ^—j 7 S Ca ll/IU^G), a < i 
w,w'eG \W — W \a 

The constants are independent off', a is any number, a< 1/2. 

PROOF OF THEOREMS 1 AND 2. We only consider here the case 
2 Sp S °° • Let G, ƒ and x be as above. Since ô is pseudoconvex there 
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is a ji : G-~*C such that dp = ƒ in ô and 

(*) |MU»c&) â K\\}\\L*fr. 
See [2, p. 107]. Thus, ll(û—x) =ƒ in G; u=û—% satisfies Theorems 1 
and 2. For x clearly does, and Û satisfies 

(7) N|L»(O> ^ *i[NU*<*> + p^lU^Ô)], H M » , 

(8) sup -LJ'~ ±r!±£K,Ü\4Lt& + \MUm<h]> «<*• 
w,w'eQ \W ~ W \a 

The estimates (7) and (8) are valid for any smooth function ûmô 
since d is elliptic; in this special case (i.e. for the operator d) they can 
be easily checked directly. Since ||4||L2(ô)â^1|/IUp(ô) (using (*) and 
p^2)f application of (4) yields Theorems 1 and 2. 

4. Uniform approximation of holomorphic functions. See the in­
troduction to this note, [7] and I. Lieb [S]. 

THEOREM 3. Let GQCn be a strongly pseudoconvex domain with 
smooth C4 boundary. There exists an open set ÔQCn

f GQVQÔ such 
that any continuous function u:G-+C which is holomorphic in G can be 
uniformly approximated on G by holomorphic functions Û defined in (5. 

PROOF. Cover dG by small balls Bi~Ba(pi), i = l , • • • , k; shift 
Ui — GC\Bi in the direction of the outward normal m a t pi to obtain 
Uf—Ui+8ni, 0 < S small. The holomorphic functions ^:Z7*-»C, 
Uf(z) ~Ui(z — dni) may not agree in U\r\U*iy i^j. Set UQ — G, ul~u, 
and let G* be such that G C 3 C G « c e « C U * . 0 UÎ and G* is strongly 
pseudoconvex with smooth boundary. Restrict u\ to v\\ V*—>C, where 
y j = jyjHG5. In G5 consider the covering V?, i**0, • • • , fe, and the 
holomorphic cocycle uj ^v\-v], i&: Vjn V$-»C. 

Theorem 3 is proved by solving a first Cousin problem with bounds: 
There exist holomorphic functions h\\ V\—>C such that hl — h^ — Vq and 

(9) sup | hi(z) \ ÛC sup | Vij(z) | , 

where C is independent of 5. The holomorphic function v* — v\ — h\ 
= vs

J — hs
j is then globally defined in G5. When S—>0 the uniform con­

tinuity of u in G and (9) yield v8—>u uniformly on G; the functions v* 
are holomorphic in shrinking neighborhoods of G. Finally each vd can 
be uniformly approximated on G by holomorphic functions defined 
in a fixed set G 2 G. (This is a well-known result.) 

The functions hi are obtained by application of Grauert-Lieb's 
theorem (i.e. Theorem 2 in case £ = o o ) to the form f—dgi—dgj, 
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&* — X)*-o*4$*> where <$ correspond to a convenient partition of 
unity in G8; Gs is chosen close to G in the C4 sense. 

(a) The Holder condition (1) does not hold for exponents a > § . I t 
may also fail in polydiscs, even for exponents < § . 

All three theorems above, as well as their proofs are valid also in 
case G is contained in a_Stein manifold. Theorems 1 and 2 hold also 
for nonsmooth forms ƒ ; d is considered in distribution sense. 

(b) G. Henkin had constructed a global kernel A(s, w) similar to 
Ramirez', and proposed a proof of approximation Theorem 3. See 
G. Henkin, Integral representations of holomorphic functions in 
strongly pseudoconvex domains and certain applications, Mat. Sb 
78 (1969), 611-632, (Russian), specially footnote in p. 631. 

I. Lieb has extended^the result in [ l ] to the case of (0, q) bounded 
smooth forms ƒ in G, df = 0 obtaining a bounded solution u of du=f. 
See I. Lieb, Beschrânktheitsaussagen fur den d" Operator, (To appear). 
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