HOLDER AND L» ESTIMATES FOR SOLUTIONS OF 3u=f
IN STRONGLY PSEUDOCONVEX DOMAINS!
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1. Introduction. A recent result due to H. Grauert and I. Lieb
[1] asserts that if G is a strongly pseudoconvex domain with smooth
boundary, GEC*, and if f= > 7., f; dz; is a C*, (0, 1) form in G,
af =0, f bounded, then the equation du=f has a solution u:G—C
such that sup,eq | #(2)| < Csupsea |£(2)], where |£(3)] = s |£:(2)]
Grauert and Lieb’s theorem is proved by writing a solution # in the
form u(w) = [¢Q(z, w) A\f(2), wEG and then estimating the kernel to
obtain [¢|Q(z, w)|dz< A4 <, A independent of wEG. The kernel
Q(z, w) is the one constructed by E. Ramirez in [6] who employed it
to obtain an integral representation formula for holomorphic func-
tions. Ramirez’ construction of Q(z, w) involves the application of
Cartan’s theorem B for vector valued functions as well as a division
theorem which he provesin [6].

We have found an alternate approach using Hérmander’s L? esti-
mates which yields a somewhat simpler proof: We first determine
(Theorem L) a local solution by the same method as in Grauert and
Lieb’s paper. In this local case, however, a kernel 2(z, w) can be writ-
ten explicitly. Our passage from local to global then uses only
Hérmander’s L? estimates for the § problem. By this method we ob-
tain a stronger result, namely a solution % satisfying a Hélder condi-
tion with any exponent &, @ <1/2, up to the boundary of G (Theorem
1). The method also yields (Theorem 2) solutions in L? whenever
fEL?, 1<p = o, thisis not an interpolation result even for 2<p =< «
(see remarks following Theorem 2).

As an application of Grauert-Lieb’s theorem we prove (Theorem 3)
that holomorphic functions which are continuous up to the boundary
of G can be uniformly approximated on G by holomorphic functions
defined in a neighborhood of G. This result has been proved inde-
pendently and at about the same time by I. Lieb [5] using the
Ramirez integral formula.
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1 The results of this note are part of the author’s thesis at New York University,
Courant Institute of Mathematical Sciences. The proofs will appear in full elsewhere.
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2. In the sequel G stands for a strongly pseudoconvex domain
GC C" with smooth C* boundary, i.e. G is open, G is compact and
there exists an open neighborhood U of 3G and a C* function \: U—R
such that GNU = {zE U, \(z) <0} ; \ is a strictly plurisubharmonic
function, i.e. Y 7., (02N/02:0%;)(2) u;ﬁ,-gA(z)Iu] 2 for all 2&U and
MEC"; here 4(2) >0. The gradient VA(z)#0 in U.

THEOREM 1. Let G be a strongly pseudoconvex domain G C* with
smooth C* boundary and let f be a C*, (0, 1) form defined in G, f=0,f
bounded. There exists a solution wu of the equation du=f in G such that

| w(w) — u(w) |

w,wel [ w— w I“

(1) < Casup lf@)], a<i,

where o is any number a<1/2 and Cq is independent of f.

CoOROLLARY 1. If G and f are as in Theorem 1, then there is a solution
u of du =f which is continuous up to the boundary of G (even though f is
defined in G and need not be continuous in G).

REMARKS. The solution # we obtain depends linearly on f. The con-
stant C, is independent of G for small C* perturbations of G. It is well
known that if =1, then (1) holds with any exponent a<1.

THEOREM 2. Let G be as itn Theorem 1, and let f be a C*, (0, 1) form
in G, 3f =0, fEL?(G), 1< p < . There exists a solution u of du=f in
G such that

(2 4l 2oy = ellfll oy, 129 S .

The remarks above also apply here, with C, replaced by c; ¢ is in-
dependent of p.

For p=2, (2) are the well-known J. J. Kohn or L. Hérmander L?
estimates [3], [4], [2]. The case p= » is Grauert-Lieb’s theorem.
The intermediate cases 2<p =< » cannot be obtained by interpola-
tion of these two known results because the operator which gives the
solution # in Grauert-Lieb’s paper differs from Kohn’s and from
Hormander’s. In Theorems 1 and 2 the operators T giving the solu-
tion # =T all agree, so there is really only one operator T involved.
However the computation which shows that T is continuous from L?
to L? and from L*® to L* also shows at the same time that T is con-
tinuous from L? to L?, 25p < .

3. Proofs. Both Theorems 1 and 2 are obtained from their ‘local”
versions 1z and 2z (which are lumped together as Theorem L below)
via an application of Hérmander's L? estimates for the 9 problem.
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Let B.(q) denote the ball of center ¢&C» and radius a.

THEOREM L. Let G and f be as in Theorem 2. There exist positive num.-
bers a, ¢', Cq, independent of f, such that in any set G Ba(q), ¢€9G,
the equation du=f has a solution u:GM\B.(q)—C satisfying

(21) |4l L2enBatary < ¢|Ifl| 2@, 1S p S oo,
If p= o, u satisfies, in addition,

— !
(1z) sup M < Cflree, @<1/2,
w,w'eG'nBa(q) I w— W l"‘

where a is any number, 2 <1/2.

REMARK. The solution # is linear in f; a, ¢/, C, are independent of G
for small C* perturbations of G; @ and ¢’ are independent of p, 1=<p
S oo,

Theorem L is proved (see Introduction) by explicitly constructing
a kernel Q(2, w), 2E B2 (@)NG, wEB.(¢)NG, a small, which gives a
solution % of the form

®) ww=fam(y@MAﬂa w € G Bug).

Then (11) and (21) are proved by direct (though nontrivial) estima-
tions in (3).

Theorem L enables us to make quantitative a well-known extension
trick (Lemma 1) which in turn implies Theorems 1 and 2 (using L?
estimates for solutions of gu =f).

LeMMA 1. Let G be as in Theorem 2. There exists a (slightly bigger)
strongly pseudoconvex domain G, GS GG, having the following prop-
erty: for any form f as in Theorem 2 there exists a c”, (0, 1) form finG
and a C* function x:G—C such that 3f =0 in G, f=f+dx in G and
@) ety £ flrer, 1595w,
©) Xl £ Ao, 1225 .

If p= x, x satisfies, in addition,
| x(w) — x(@") |
sup
ww'€G I w—w |°‘

(6) = Cflzme @<

The constants are independent of f; o is any number, a <1/2.

ProoF oF THEOREMS 1 AND 2. We only consider here the case
2<p=Z w.Let G, and x be as above. Since G is pseudoconvex there
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is a p:G—C such that gz =/ in G and

(%) 4 22y = K|l 2.

See [2, p. 107]. Thus, 8(#—x) =f in G; u =4 —x satisfies Theorems 1
and 2. For x clearly does, and # satisfies

™ 8l 2@) = Kullla]| 2@, + [|08]]2®], 159 S =,

®  sup LA @)

< Kof|jdl| @) + [|od]|zo@)], @ <1
ww'e@ I w - w’ ‘a

The estimates (7) and (8) are valid for any smooth function # in &
since 9 is elliptic; in this special case (i.e. for the operator g) they can
be easily checked directly. Since “12“ 2o sSK' H f” 2@ (using (*) and
p22), application of (4) yields Theorems 1 and 2.

4. Uniform approximation of holomorphic functions. See the in-
troduction to this note, [7] and I. Lieb [3].

THEOREM 3. Let GCSC» be a strongly pseudoconvex domain with
smooth C* boundary. There exists an open set GSCr, GCGCE such
that any continuous function u:G—C which is holomorphic in G can be
uniformly approximated on G by holomorphic functions 4 defined in G.

Proor. Cover dG by small balls B;=B,(p:), 1=1, - - -, k; shift
U;=GNB; in the direction of the outward normal #; at p; to obtain
Ul=U;+6n; 0<8 small. The holomorphic functions #:Ui—C,
4}(z) =ui(z—8n;) may not agree in UN\US, i5j. Set Uy=G, uf=u,
and let G® be such that GCGC GG CUL, U and G? is strongly
pseudoconvex with smooth boundary. Restrict % to 25: Vi—C, where
Vi=U!NG®. In G® consider the covering V?, i=0, - - -, k, and the
holomorphic cocycle v} =22 —1), of;: V2N Vi—C.

Theorem 3 is proved by solving a first Cousin problem with bounds:
There exist holomorphic functions #: Vi—C such that h{—h} =1 and
) sup | hi(z) | =cC sup l vf,-(z)l )

zeVii=0,...,k 2eViNVii,j=0,...k
where C is independent of 8. The holomorphic function v®=1?—ha8
=1)— 1§ is then globally defined in G®. When §—0 the uniform con-
tinuity of # in G and (9) yield »*—u uniformly on G; the functions v*
are holomorphic in shrinking neighborhoods of G. Finally each * can
be uniformly approximated on G by holomorphic functions defined
in a fixed set G2 G. (This is a well-known result.)

The functions k; are obtained by application of Grauert-Lieb's
theorem (i.e. Theorem 2 in case p= ®) to the form f=23g}=2ag],
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g =209}, where ¢ correspond to a convenient partition of
unity in G°; G® is chosen close to G in the C* sense.

(a) The Holder condition (1) does not hold for exponents a>$%. It
may also fail in polydiscs, even for exponents <3.

All three theorems above, as well as their proofs are valid also in
case G is contained in a Stein manifold. Theorems 1 and 2 hold also
for nonsmooth forms f; 9 is considered in distribution sense.

(b) G. Henkin had constructed a global kernel Q(z, w) similar to
Ramirez’, and proposed a proof of approximation Theorem 3. See
G. Henkin, Integral representations of holomorphic functions in
strongly pseudoconvex domains and ceriain applications, Mat. Sb
78 (1969), 611-632, (Russian), specially footnote in p. 631.

I. Lieb has extended the result in [1] to the case of (0, ¢) bounded
smooth forms f in G, 8f =0 obtaining a bounded solution % of du =f.
See 1. Lieb, Beschrinktheitsaussagen fur den d” Operator, (To appear).
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