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ABsTRACT. We consider a large class of arithmetical functions
generated by Dirichlet series satisfying a functional equation with
gamma factors. Our objective is to state some Q results for the
average order of these arithmetical functions.

Our objective here is to state some Q-theorems on the average order
of a class of arithmetical functions.

We indicate very briefly the class of arithmetical functions under
consideration. For a more complete description, see [4].

Let {a(n)} and {b(n)} be two sequences of complex numbers, not
identically zero. Let {\,} and {u.} be two strictly increasing se-
quences of positive numbers tending to . Put s=¢+14 with ¢ and ¢
both real and suppose that

0

o) = 3 als’ and (s) = 32 b(n)un’

n=1 n=1

each converge in some half-plane. Let o) denote the abscissa of
absolute convergence of Y. Put

N
AGs) = JI T(ews + 85),
v=1
where ,>0 and f, is complex, v=1, - - -, N. Assume that for sone
real number 7, ¢ and ¢ satisfy the functional equation A(s)¢(s)
=A(r—s)Y(r—s).

We shall consider the Riesz sum
1
Ay(x) = ———— 2, a(n)(x — N4,
e+ xz
where ¢=0. Let a= Zﬁv_l o, and define
1 T (s)p(s)xs+e

Qq(x) =‘2;; m Sy
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where C, is a cycle encircling all of the singularities of the integrand
to the right of o= —g—1—F, where k> | %r—-l/(4oz)| , and where all
of the singularities of ¢ lie in ¢> —%. Then, the “error term” P ,(x)
is defined by

Py(x) = Ay(x) — Qo).

Furthermore, let

N
B =B=— 2B+ 3N —¥ra—3%—1qg

0(q) = 0 =%r —1/(4) + ¢ — ¢/ (2a),
and

k(g) =k = o — 3r — 1/(4a) — ¢/(2a).

From [4, p. 111], k(0)=0. In the sequel we assume that k(g) = 0. If

k(g) <0, the order of P,(x) can be determined exactly [4, Theorem
3.2].

We are now ready to state

THEOREM 1. Assume that b(n) =0 and that B, is real,v=1, - - -, N.
Suppose that there exist constants ¢ and p such that as x tends to «,

> b(m) ~ cast logr? x.

MpST

Lastly, suppose that pni1—tn=0(,), as n tends to . Then, if cos(Bm)
>0and k>0,

Re{Pq(x)} = Q+(x°{log x}"{log log x}71);
if cos(Bmw) <0 and k>0,
Re{Py(x)} = Q_(2*{log x}*{log log «}~).

The proof of Theorem 1 for ¢=0 is given in [1]. The proof of the
more general theorem given here follows along the same lines. The
idea of the proof goes back to Szegs [7] and Szegs and Walfisz [8].
Dirichlet’s theorem on the simultaneous approximation of a finite
set of real numbers is used in the proof, and it is at this stage of the
proof that the restriction b(z) =0 is necessary.

Results of Hardy [5] on 7,(n), the number of representations of #
as the sum of two squares, and on d(n), the divisor function, are
special cases of Theorem 1. Results of Szegs [7] on 7x(n) and Szegs
and Walfisz [8] on the Piltz divisor problem in algebraic number
fields are also special cases.

For the arithmetical functions under consideration, Theorem 1 isan



858 B. C. BERNDT [July

improvement upon general theorems of Landau [6] and Chandra-
sekharan and Narasimhan [3], [4].

Theorem 1 yields only “one-sided” results. In many cases, how-
ever, we can obtain “two-sided” results as the following theorem
shows.

THEOREM 2. Assume the hypotheses of Theorem 1. Let Qu(x) be
Qo(x) except that ¢ is replaced by . Suppose that as x tends to =,

0/ (%) ~ coFame-1 logr! x.

Let y(q) =y =20ax—1, and for k>0 and a real define
g(a) = f e¥u¥ cos(au + Br)du.
0

Then, if k>0 and g(a) has a change in sign,

(1) Re{Py(x)} = Qu(+*{log x}*{log log x}>);
if k=0, in all cases,
) Re{Py(x)} = Q:(2*{log log =}*).

The assumption in Theorem 1 that cos(B7) %0 has been removed.
However, we have an additional restriction in that g(e) has a change
in sign. In [2] we establish some general conditions under which g(a)
has a sign change. We also determine there some conditions under
which g(e) has no sign change. It is very unfortunate, indeed, that
the most interesting cases of 7:(n) and d(n) for ¢=0 fall into this
latter category.

The proof of Theorem 2 for ¢=0 and x>0 is given in [2], and the
proof for ¢>0 follows along the same lines. For k=0, the proof is, in
fact, somewhat easier. The idea for the proof of Theorem 2 goes back
to Szego and Walfisz [9], and so their results on the Piltz divisor
problem for algebraic number fields are special cases of Theorem 2.
Again, Dirichlet’s theorem is used in the proof, but in a different way,
however.

Our next theorem yields some information on how often the in-
equalities (1) and (2) in Theorem 2 are valid.

THEOREM 3. Assume the hypotheses of Theorem 2. Then, there exist
positive constants ¢, and c; and a positive, strictly increasing sequence
{9.} tending to o such that both inequalities

+ Re{Pq(x)} > c1#’(log x)*(log log x)#!
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if k>0, and
+ Ref Py(%)} > ex?(log log x)*

if k=0, have solutions in each interval

1~1/(2a)

1/2—1/(2a)
Yn S XS Yo+ C2Yn :

(log y») .

For k>0 and ¢=0 the proof is given in [2]. The proof of the more
general Theorem 3 is exactly the same. Theorem 3 gives an improve-
ment upon a general theorem of Landau [6] for the arithmetical func-
tions under consideration.

The author is grateful to John Steinig for several critical comments
concerning [1], [2] and this paper.
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