ON THE AVERAGE ORDER OF SOME ARITHMETICAL FUNCTIONS

BY BRUCE C. BERNDT1

Communicated by Paul T. Bateman, February 3, 1970

ABSTRACT. We consider a large class of arithmetical functions generated by Dirichlet series satisfying a functional equation with gamma factors. Our objective is to state some Ω results for the average order of these arithmetical functions.

Our objective here is to state some Ω -theorems on the average order of a class of arithmetical functions.

We indicate very briefly the class of arithmetical functions under consideration. For a more complete description, see [4].

Let $\{a(n)\}$ and $\{b(n)\}$ be two sequences of complex numbers, not identically zero. Let $\{\lambda_n\}$ and $\{\mu_n\}$ be two strictly increasing sequences of positive numbers tending to ∞ . Put $s = \sigma + it$ with σ and t both real and suppose that

$$\phi(s) = \sum_{n=1}^{\infty} a(n) \lambda_n^{-s}$$
 and $\psi(s) = \sum_{n=1}^{\infty} b(n) \mu_n^{-s}$

each converge in some half-plane. Let σ_a^* denote the abscissa of absolute convergence of ψ . Put

$$\Delta(s) = \prod_{\nu=1}^{N} \Gamma(\alpha_{\nu}s + \beta_{\nu}),$$

where $\alpha_r > 0$ and β_r is complex, $\nu = 1, \dots, N$. Assume that for sone real number r, ϕ and ψ satisfy the functional equation $\Delta(s)\phi(s) = \Delta(r-s)\psi(r-s)$.

We shall consider the Riesz sum

$$A_q(x) = \frac{1}{\Gamma(q+1)} \sum_{\lambda_n \le x} a(n) (x - \lambda_n)^q,$$

where $q \ge 0$. Let $\alpha = \sum_{\nu=1}^{N} \alpha_{\nu}$ and define

$$Q_q(x) = \frac{1}{2\pi i} \int \frac{\Gamma(s)\phi(s)x^{s+q}}{c_a \Gamma(s+q+1)} ds,$$

AMS Subject Classifications. Primary 1043; Secondary 1040, 1041.

Key Words and Phrases. Arithmetical function, functional equation with gamma factors, Dirichlet series, average order.

¹ Research partially supported by NSF Grant # GP-7506.

where C_q is a cycle encircling all of the singularities of the integrand to the right of $\sigma = -q - 1 - k$, where $k > \left| \frac{1}{2}r - 1/(4\alpha) \right|$, and where all of the singularities of ϕ lie in $\sigma > -k$. Then, the "error term" $P_q(x)$ is defined by

$$P_{a}(x) = A_{a}(x) - Q_{a}(x).$$

Furthermore, let

$$\beta(q) = \beta = -\sum_{\nu=1}^{N} \beta_{\nu} + \frac{1}{2}N - \frac{1}{2}r\alpha - \frac{3}{4} - \frac{1}{2}q,$$

$$\theta(q) = \theta = \frac{1}{2}r - \frac{1}{4}\alpha + \frac{1}{2}q - \frac{3}{4}\alpha - \frac{1}{2}q,$$

and

$$\kappa(q) = \kappa = \sigma_a^* - \frac{1}{2}r - 1/(4\alpha) - q/(2\alpha).$$

From [4, p. 111], $\kappa(0) \ge 0$. In the sequel we assume that $\kappa(q) \ge 0$. If $\kappa(q) < 0$, the order of $P_q(x)$ can be determined exactly [4, Theorem 3.2].

We are now ready to state

THEOREM 1. Assume that $b(n) \ge 0$ and that β , is real, $\nu = 1, \dots, N$. Suppose that there exist constants c and ρ such that as x tends to ∞ ,

$$\sum_{\mu_n \leq x} b(n) \sim c x^{\sigma_n^*} \log^{\rho-1} x.$$

Lastly, suppose that $\mu_{n+1} - \mu_n = o(\mu_n)$, as n tends to ∞ . Then, if $\cos(\beta \pi) > 0$ and $\kappa > 0$,

$$\operatorname{Re}\left\{P_{q}(x)\right\} = \Omega_{+}(x^{\theta}\{\log x\}^{n}\{\log\log x\}^{p-1});$$

if $\cos(\beta\pi) < 0$ and $\kappa > 0$,

$$\operatorname{Re}\left\{P_{q}(x)\right\} = \Omega_{-}(x^{\theta}\{\log x\}^{\kappa}\{\log\log x\}^{\rho-1}).$$

The proof of Theorem 1 for q=0 is given in [1]. The proof of the more general theorem given here follows along the same lines. The idea of the proof goes back to Szegö [7] and Szegö and Walfisz [8]. Dirichlet's theorem on the simultaneous approximation of a finite set of real numbers is used in the proof, and it is at this stage of the proof that the restriction $b(n) \ge 0$ is necessary.

Results of Hardy [5] on $r_2(n)$, the number of representations of n as the sum of two squares, and on d(n), the divisor function, are special cases of Theorem 1. Results of Szegö [7] on $r_k(n)$ and Szegö and Walfisz [8] on the Piltz divisor problem in algebraic number fields are also special cases.

For the arithmetical functions under consideration, Theorem 1 is an

improvement upon general theorems of Landau [6] and Chandrasekharan and Narasimhan [3], [4].

Theorem 1 yields only "one-sided" results. In many cases, however, we can obtain "two-sided" results as the following theorem shows.

THEOREM 2. Assume the hypotheses of Theorem 1. Let $Q_{\psi}(x)$ be $Q_0(x)$ except that ϕ is replaced by ψ . Suppose that as x tends to ∞ ,

$$Q_{\psi}'(x) \sim c\sigma_a^* x^{\sigma_a^*-1} \log^{\rho-1} x.$$

Let $\gamma(q) = \gamma = 2\alpha \kappa - 1$, and for $\kappa > 0$ and a real define

$$g(a) = \int_0^\infty e^{-u^2} u^{\gamma} \cos(au + \beta \pi) du.$$

Then, if $\kappa > 0$ and g(a) has a change in sign,

(1)
$$\operatorname{Re}\left\{P_{q}(x)\right\} = \Omega_{\pm}(x^{\theta}\{\log x\}^{\kappa}\{\log\log x\}^{\rho-1});$$

if $\kappa = 0$, in all cases,

(2)
$$\operatorname{Re}\left\{P_{q}(x)\right\} = \Omega_{\pm}(x^{\theta}\{\log\log x\}^{\rho}).$$

The assumption in Theorem 1 that $\cos(\beta \pi) \neq 0$ has been removed. However, we have an additional restriction in that g(a) has a change in sign. In [2] we establish some general conditions under which g(a) has a sign change. We also determine there some conditions under which g(a) has no sign change. It is very unfortunate, indeed, that the most interesting cases of $r_2(n)$ and d(n) for q=0 fall into this latter category.

The proof of Theorem 2 for q=0 and $\kappa>0$ is given in [2], and the proof for q>0 follows along the same lines. For $\kappa=0$, the proof is, in fact, somewhat easier. The idea for the proof of Theorem 2 goes back to Szegö and Walfisz [9], and so their results on the Piltz divisor problem for algebraic number fields are special cases of Theorem 2. Again, Dirichlet's theorem is used in the proof, but in a different way, however.

Our next theorem yields some information on how often the inequalities (1) and (2) in Theorem 2 are valid.

THEOREM 3. Assume the hypotheses of Theorem 2. Then, there exist positive constants c_1 and c_2 and a positive, strictly increasing sequence $\{y_n\}$ tending to ∞ such that both inequalities

$$\pm \operatorname{Re} \{ P_q(x) \} > c_1 x^{\theta} (\log x)^{\kappa} (\log \log x)^{\rho-1}$$

if $\kappa > 0$, and

$$\pm \operatorname{Re} \{ P_{\mathbf{q}}(x) \} > c_1 x^{\theta} (\log \log x)^{\rho}$$

if $\kappa = 0$, have solutions in each interval

$$y_n \le x \le y_n + c_2 y_n^{1-1/(2\alpha)} (\log y_n)^{1/2-1/(2\alpha)}$$
.

For $\kappa > 0$ and q = 0 the proof is given in [2]. The proof of the more general Theorem 3 is exactly the same. Theorem 3 gives an improvement upon a general theorem of Landau [6] for the arithmetical functions under consideration.

The author is grateful to John Steinig for several critical comments concerning [1], [2] and this paper.

REFERENCES

- 1. Bruce C. Berndt, On the average order of a class of arithmetical functions. I, J. Number Theory (to appear).
- 2. ——, On the average order of a class of arithmetical functions. II, J. Number Theory (to appear).
- 3. K. Chandrasekharan and Raghavan Narasimhan, Hecke's functional equation and the average order of arithmetical functions, Acta Arith. 6 (1960/61), 487-503. MR 23 #A3719.
- 4. ——, Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. of Math. (2) 76 (1962), 93-136. MR 25 #3911.
- 5. G. H. Hardy, On Dirichlet's divisor problem, Proc. London Math. Soc. (2) 15 (1916), 1-25.
- 6. E. Landau, Über die Anzahl der Gitterpunkte in gewissen Bereichen, Abh. Nachr. Ges. Wiss. Göttingen 4 (1924), 137-150.
- 7. G. Szegő, Beiträge zur Theorie der Laguerreschen Polynome. II: Zahlentheoretische Anwendungen, Math. Z. 25 (1926), 388-404.
- 8. G. Szegő und A. Walfisz, Über das Piltzsche Teilerproblem in algebraischen Zahlkörpern. I, Math. Z. 26 (1927), 138-156.
- 9. —, Über das Piltzsche Teilerproblem in algebraischen Zahlkörpern. II, Math. Z. 26 (1927), 467-486.

University of Illinois, Urbana, Illinois 61801