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I. Introduction. Physicists believe that quantum field theory can 
describe the interactions between elementary particles. The difficul­
ties in constructing model quantum field theories become more tract­
able in two dimensional space-time. The best understood two dimen­
sional model is the "A(<£4)2 quantum field theory" [l]-[4]. We discuss 
this model which describes a self interacting boson field <t>(x, t). 

Let (B be a bounded open subset of R2. For (x, t) G <B, the field <t>(x, t) 
is a sesquilinear form defined on a dense domain 3D in a Hilbert space 
3C. Furthermore <f> is continuous in (x, t) and satisfies the nonlinear 
partial differential equation 

The nonlinear term (08)(x, /) is defined in [3], and (1) holds on 
3DX3) as an equation for Schwartz distributions. 

For real ƒ G Co°, the sesquilinear form 

(2) 4>(J) = ƒ 4>(x, *)ƒ(*, t)dx it 

uniquely determines a self ad joint operator <£(ƒ) [3]. Let 21 ((B) denote 
the von Neumann algebra 

(3) 2t((B) = {«*</>:ƒ = J G C?, supp ƒ C &}". 

One can interpret 2I((B) as the bounded observables in the space-
time region (B. It is convenient to work with the C*-algebra 21 of 
quasilocal observables defined as the norm closure of U<BC2Î22I(.B). 
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The field <£(x, t) is also space time translation covariant [3 ] - [4]. 
If a = (ce, r) £.R2, there is a unitary operator 

(4) U(a) « exp(iFr - iPa) 

such that 

(5) 4>(x + « ,* + * ) - U(a)<t>(x, f)U(a)*. 

The transformation (4)-(5) uniquely determines a ^-isomorphism 

(6) aalSt(<B) -> Sl((B + a) = tf(a)«((B)tf (a)* 

for each (B, and Ö*0 extends uniquely to a *-automorphism of H. 

II . Relativistic covariance. Covariance of the field under Lorentz 
transformation is a usual axiom of quantum field theory. We prove 
that this axiom holds for the A(<£4)2 theory of [ l ] - [ 4 ] . To formulate 
Lorentz covariance, let (P denote the restricted Poincaré group of 
transformations. An element {a, A^} £(P is defined by its action on 
R\ 

{a, A?} (x, t) « (a;(cosh 0) + *(sinh 0) + a, 

*(sinh 13) + /(cosh 0) + r) . 

Hence (P is the semidirect product of the space-time translations a 
with the pure Lorentz transformations A^ (corresponding to velocity 
boosts tanh /3). 

THEOREM. For each {a, A/s} £<? and each bounded set (BC-^2, there 
is a unitary operator U so that f or all (x, t) £(B, 

(8) *({a,A,}(*,/)) = U<Kx,t)U*y 

as an equality between operator valued distributions. 

COROLLARY 1. There is a representation <T{a%^\ of (P by ^automor­
phisms of 21 such that 

(9) ^ , Arf : « ( © ) - * » ( { a , A^}(B). 

We first establish the theorem for pure Lorentz transformations 
{0, A/?} and compact sets (Bi in the quadrant {x> \t\\. Given /3o>0, 
we construct a unitary group £/(j3)=exp (iJkT/3) satisfying (8) for 
|j8| <]8o. Our choice of a selfadjoint local generator M is motivated 
by familiar formal expressions in the physics literature. It is techni­
cally convenient to have 0 2g M, which is possible only if (Bi C {x > \ t \ } . 

The key step in proving (8) is to show that <j>(xf t) of (5) satisfies 
the partial differential equation 
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(10) it ~ + X^X *(*, t) - [iM, 4>(X, t)]. 
I dx dt) 

We obtain (10) from a lengthy series of estimates which allow us to 
compute [iM, <l>] on a dense subset of 3CX3C. We then integrate (10) 
to obtain (8) for our special case. The general case follows, since a 
Poincaré transformation from an arbitrary bounded set (BC-R2 can 
be expressed as a product of space-time translations (6) and a pure 
Lorentz transformation from a compact set (BiC {#> 11\ } • 

Corollary 1, together with the results of [3] asserts the following: 

COROLLARY 2. The algebras §I((B) and H of the\(<f>4)2 quantum field 
theory satisfy all of the Haag-Kastler axioms for a quantum field 
theory [S]. 
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