GROMOLL GROUPS, Diff Sⁿ AND BILINEAR CONSTRUCTIONS OF EXOTIC SPHERES

BY P. ANTONELLI, D. BURGHELEA AND P. J. KAHN¹

Communicated by William Browder, February 20, 1970

1. Introduction and main results. The Kervaire-Milnor group Γ^n has a filtration by subgroups,

$$0 = \Gamma_{n-1}^{n} \subset \cdots \subset \Gamma_{k+1}^{n} \subset \Gamma_{k}^{n} \subset \cdots \subset \Gamma_{1}^{n} = \Gamma^{n},$$

due to Gromoll [9], which we study by means of certain homomorphisms

See [12] for definitions. The pairing σ was first introduced by Milnor [13] and has been studied in [3], [11]. The pairing τ has been studied in [8], [16].

The groups of Gromoll are related to the homotopy groups of Diff S^n by a simple pasting construction: namely, there are homomorphisms $\lambda_i:\pi_i(\text{Diff }S^n)\to\Gamma^{n+i+1}$ with image $\lambda_i=\Gamma_{i+1}^{n+i+1}$ (see Proposition 2.1 and also $[9, \S1]$).

We shall detect nontrivial elements in some Γ_{k+1}^n . Note that $\Gamma_{k+1}^n \neq 0$ implies that $\Gamma_{i+1}^n \neq 0$ and, hence, $\pi_i(\text{Diff } S^{n-i-1}) \neq 0$, for all $i \leq k$. For slightly sharper statements see Proposition 3.3 and Proposition 3.4.

1.1. THEOREM. (a) $\Gamma_{2k-2}^{4k-1} \neq 0$, for all $k \ge 4$. (b) $\Gamma_{2v(k)}^{4k+1} \neq 0$, for all $k \ge 0$, $k \neq 2^{l} - 1$.

Here v(k) is the maximum number of linearly independent vector fields on S^{2k+1} . It is well known that v(k) = 1 when k is even and $v(k) \ge 3$, when k is odd. Its precise value is given in [2].

Theorem 1.1 follows from some of our results on σ . Corollary 3.5, below, also based on work with σ , actually establishes fairly large lower bounds for the order of Γ_{2k-2}^{4k-1} (with some restrictions on k).

¹ Work of all authors supported in part by National Science Foundation.

AMS Subject Classifications. Primary 5710, 5755; Secondary 5322.

Key Words and Phrases. Kervaire-Milnor group of exotic spheres, Γ^n , Gromoll filtration of Γ^n , group of self-diffeomorphisms, homotopy type of CW complex, homotopy-abelian H-space, inertia groups of manifolds, sectional curvature, pinching, bilinear pairings of Milnor-Munkres-Novikov.

1.2. THEOREM. (a) Let Q be an odd prime, and let u and v be integers satisfying $0 \le v < u \le Q-1$, $u-v \ne Q-1$. Write n = 2(uQ+v+1)(Q-1)-2(u-v)-1. Then, $\Gamma_{2Q-2}^n \supseteq Z_Q$. (b) Γ_2^9 and Γ_2^{10} are nontrivial.

Theorem 1.2 is proved using τ (see Proposition 3.2). It generalizes results in [16].

1.3. THEOREM. Diff S^n cannot be dominated by a finite CW complex, provided $n \ge 7$.

In particular, for this range of values of n, Diff S^n is not dominated by a finite-dimensional Lie group. This answers a question raised by J. Eells and R. Palais.

Theorem 1.3 contrasts with the fact that, for n = 1, 2, Diff S^n has the homotopy type of SO_{n+1} [18]. The only undecided dimensions, therefore, are n = 3, 4, 5, 6.

In §2 we deduce Theorem 1.3 from Theorem 1.1 (a) and Theorem 1.2 (b). In §3, we describe our results on σ and τ and give a table of low-dimensional computations. In §4, we relate our results to the inertia groups $I(\Sigma^n \times S^p)$, and we comment on Gromoll's pinching numbers δ_n .

We would like to thank J. Milnor and N. Kuiper for their stimulating suggestions.

2. Proof of Theorem 1.3. Diff S^n (resp., Diff (S^n, D^n_+)) is the group of all C^{∞} , orientation-preserving diffeomorphisms of S^n (resp., those which keep fixed the upper hemisphere D^n_+). Give it the C^{∞} topology. SO_{n+1} is a closed subgroup of Diff S^n . It is well known ([7], [17]) that Diff S^n and Diff (S^n, D^n_+) have the homotopy type of countable CW complexes and that the map $SO_{n+1} \times \text{Diff}(S^n, D^n_+) \to \text{Diff} S^n$ defined by group-multiplying the inclusions

 $SO_{n+1} \subset \text{Diff } S^n \supset \text{Diff}(S^n, D^n_+)$

is a homotopy equivalence.

2.1. PROPOSITION. (a) The multiplication of $\text{Diff}(S^n, D^n_+)$ is homotopy-abelian.

(b) Let $\lambda_i: \pi_i(\text{Diff } S^n) \to \Gamma^{n+i+1}$ be as in §1, and let μ_i be its restriction to the direct summand $\pi_i(\text{Diff}(S^n, D^n_+))$. Then image $\mu_i = \Gamma_{i+1}^{n+i+1}$.

Let $A_n = \text{Diff}(S^n, D^n_+)$ and note that $\pi_1 A_n = H_1 A_n$.

2.2. PROOF OF THEOREM 1.3. If Diff $S^n \sim SO_{n+1} \times A_n$ is dominated by a finite CW complex, for some *n*, then so is A_n , and so $H_*(A_n; \mathbb{Z}_p)$ is finitely-generated, for all primes *p*. According to Browder [6], therefore, H_*A_n has no torsion. In particular, $\pi_1A_n = H_1A_n$ is freeabelian. Thus, the projective class group $\tilde{K}_0(\pi_1A_n)$ vanishes, so that A_n has the homotopy type of a finite CW complex (Wall [21]). It now follows from Hubbuck [10] that the identity component of A_n has the homotopy type of a point or of a product of circles, so that $\pi_iA_n = 0, i \ge 2$.

Theorem 1.1 (a) and Theorem 1.2 (b), together with Proposition 3.2 and the subsequent remark, imply that $\pi_1 A_7$ and $\pi_1 A_8$ have elements of finite order and that, for $n \ge 9$, there is some $i \ge 2$ such that $\pi_i A_n \ne 0$. Thus, $n \le 6$ as desired. This completes our proof.

Note that when $\pi_1 A_n$ has elements of finite order Browder's theorem alone implies that Diff S^n is not finitely dominated. Our results on the τ -pairing (Theorem 1.2 and Proposition 3.2) yield infinitely many such *n*, but not enough to prove Theorem 1.3.

3. The pairings σ and τ . The Gromoll groups are related to σ and τ by the next two propositions. Let $\mu_i:\pi_i(\text{Diff}(S^n, D^n_+))\to\Gamma^{n+i+1}$ be as in Proposition 2.1 (b).

3.1. PROPOSITION. For any a, b, $0 \le a \le q$, $0 \le b \le p$, let $i_a:\pi_p(SO_{q-a}) \rightarrow \pi_p(SO_q)$ and $i_b:\pi_q(SO_{p-b}) \rightarrow \pi_q(SO_p)$ be the homomorphisms induced by the standard inclusions. Write c=a+b+1. Then, there is a homomorphism

$$g_c: \pi_p(SO_{q-a}) \otimes \pi_q(SO_{p-b}) \to \pi_c(\operatorname{Diff}(S^{p+q-a}, D^{p+q-a}_+))$$

such that $\mu_c g_c = \sigma_{p,q} \circ (i_a \otimes i_b)$.

In particular, image $(\sigma_{p,q} \circ (i_a \otimes i_b)) \subset \Gamma_{c+1}^{p+q+1}$.

3.2. PROPOSITION. For every q > 1, there is a homomorphism

 $h_q: \Gamma^{p+1} \otimes \pi_q(SO_p) \to \pi_q(\operatorname{Diff}(S^p, D^p_+))$

such that $\mu_q h_q = \tau_{p+1,q}$.

In particular, image $\tau_{p+1,q} \subset \Gamma_{q+1}^{p+q+1}$.

REMARK. Note that domain $\tau_{p+1,q}$ is finite, so that if image $\tau_{p+1,q} \neq 0$, then $\pi_q(\text{Diff}(S^p, D^p_+))$ has elements of finite order.

To prove Theorem 1.2, we follow Novikov [16] and map $\tau_{p+1,q}$ into the composition pairing in stable homotopy. Then we apply results of Toda [19], [20].

The nonzero elements in Theorem 1.1 (b) are Kervaire spheres (which, of course, come from σ). We prove Theorem 1.1 (a), for large k, by applying the Eells-Kuiper μ -invariant, as in [11], to Milnor's plumbing construction [13] and by using the Barratt-Mahowald Splitting Theorem to show that μ takes the same values on image $\sigma_{4r-1,4s-1} \circ (i_a \otimes i_b)$ as on the entire image $\sigma_{4r-1,4s-1}$, provided 4s-1-a >max(2r, 12), and 4r-1-b>max(2s, 12). For small k, we use Milnor's method [13] applied to the μ -invariant.

For sharper results on σ , we generalize some work of D. R. Anderson [3] and again apply the Barratt-Mahowald Splitting Theorem. To describe our conclusions, let

 $j_m = \text{order image } J_{4m-1}$ and $b_m = (2^{2m-1} - 1)B_m a_m j_m / 2m$,

where B_m is the *m*th Bernoulli number, and $a_m = 1$ or 2, according as *m* is even or odd. Write

$$\rho_{r,s} = b_{r+s}/\text{g.c.d.}(b_{r+s}, b_r b_s)$$

3.3. PROPOSITION. Let r and s be integers satisfying $r \ge 6$, $s \ge 6$, r < 2s < 4r, and write t = r + s. Then, $\Gamma_{2t-2}^{4t-1} \cap bP_{4t}$ contains a cyclic group of order $\rho_{r,s}$.

3.4. PROPOSITION. (a) Let r, s, t be as in 3.3. Then $p_{r,s}$ is odd and

$$\rho_{r,s} > \frac{1}{8}(2t-1)\binom{2t-2}{2r-1}j_t/j_rj_s.$$

(b) Write $r = 2^d (2e+1)$. Then $\rho_{r,r} > 2^{2r-d-9}$.

REMARKS. The lower bound $\frac{1}{8}(2t-1)\binom{2t-1}{2r-1}j_t/j_rj_s$ is often large. For example, if r and s are primes, $7 \le r < s < 2r$. Then, this bound is larger than $2^{3r+s-8}/(2r+1)(2s+1)$. Much stronger but more complicated statements are possible.

When r=s, Proposition 3.3 is essentially Anderson's Theorem 1, [3], combined with Proposition 3.1. The proof of 3.4 involves complicated but elementary number theory.

We now display some divisors of Γ_{k}^{n} , k and n small. Results of [14], [15], [19], [20] are used for some of the calculations. Recall that $\Gamma_{1}^{n} = \Gamma^{n}$ and $\Gamma_{k+1}^{n} \subset \Gamma_{k}^{n}$. According to Cerf, $\Gamma_{2}^{n} = \Gamma^{n}$, for all n. For the reader's convenience, we give the order of $\Gamma_{2}^{n} = \Gamma_{1}^{n} = \Gamma^{n}$ precisely.

$k \setminus n$	13	15	19	21	22
2	3	16,256	523,264	4	4
3	3	4,064	2,044	2	2
4	3	2,032	2,044	2	2
5		1,016	2,044	2	
6		508	1,022	2	
7			511		
8			511		

Some divisors of order (Γ_k^n)

When entries are omitted for $n \leq 22$, this means that our techniques give no additional information.

4. Remarks on $I(\Sigma^{p+1} \times S^q)$ and the Gromoll numbers δ_n .

4.1. $I(\Sigma \times S^q) \subset \Gamma_{q+1}^{p+q+1}$, for all $\Sigma \in \Gamma^{p+1}$ and $q \ge 2$.

This follows from 3.2 and DeSapio's results on the τ -pairing [8]. 4.2. When $p \ge 2q-1$, some $I(\Sigma^{p+1} \times S^q)$ have elements of odd prime order.

This follows from Theorem 2.1 and DeSapio [8], and it contrasts with the fact, deducible from [4], that $I(\Sigma^{p+1} \times S^q)$ is 2-primary when p < 2q - 1.

4.3. There are spheres in image σ which are not in image τ .

This follows from the last assertion in 4.2, together with 3.3 and 3.4 (a).

4.4. In [9], Gromoll defines an increasing sequence of real δ_k satisfying $\delta_1 = 1/4$ and $\lim \delta_k = 1$. He proves that if the sphere Σ^n can be δ_k -pinched, then $\Sigma^n \in \Gamma_k^n$. Since $\Gamma_{n-2}^n = 0$, [18], Σ^n can be δ_{n-2} -pinched only if Σ^n is diffeomorphic to S^n .

Question 1. Can every sphere in Γ_k^n be δ_k -pinched?

This probably asks too much, since no examples of riemannian exotic spheres admitting positive sectional curvature are known.

Call δ *N*-universal if $0 < \delta < 1$ and if $\Sigma^n \delta$ -pinched and $n \ge N$ imply Σ^n diffeomorphic to S^n .

Question 2. Does an N-universal δ exist, for some N?

Question 2 was asked by Gromoll [9].

We simply remark here that an affirmative answer to either question implies a negative answer to the other, because $\Gamma_{2k-2}^{4k-1} \neq 0, k \geq 4$.

References

1. J. F. Adams, On the groups J(X). IV, Topology 5 (1966), 21-71; correction, ibid., 7 (1968), 331. MR 33 #6628; MR 37 #5874.

2. ——, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603-632. MR 25 #2614.

3. D. R. Anderson, On homotopy spheres bounding highly connected manifolds, Trans. Amer. Math. Soc. **139** (1969), 155–161.

4. P. L. Antonelli, On the stable diffeomorphism of homotopy spheres in the stable range, n < 2p, Bull. Amer. Math. Soc. 75 (1969), 343-346. MR 39 #2174.

5. M. G. Barratt and M. E. Mahowald, The metastable homotopy of O(n), Bull. Amer. Math. Soc. 70 (1964), 758-760. MR 31 #6229.

6. W. Browder, Homotopy commutative H-spaces, Ann. of Math. (2) 75 (1962), 283-311. MR 27 #765.

7. J. Cerf, Topologie de certains espaces de plongements, Bull. Soc. Math. France 89 (1961), 227-380. MR 25 #3543. 8. R. DeSapio, Differential structures on a product of spheres, Ann. of Math. (2) 89 (1969), 305-313.

9. D. Gromoll, Differenzierbare Strukturen und Metriken positiver Krummung auf Sphören, Math. Ann. 164 (1966), 353-371. MR 33 #4940.

10. J. R. Hubbuck, On homotopy commutative H-spaces, Topology 8 (1969), 119-126. MR 38 #6592.

11. A. Kosinski, On the inertia group of π -manifolds, Amer. J. Math. 89 (1967), 227-248. MR 35 #4936.

12. R. Lashof (Editor), Problems in differential and algebraic topology, Seattle Conference, 1963, Ann. of Math. (2) 81 (1965), 565-591. MR 32 #443.

13. J. Milnor, Differentiable structures on spheres, Amer. J. Math. 81 (1959), 962-972. MR 22 #990.

14. M. Mimura, On the generalized Hopf homomorphism and the higher composition. II: $\pi_{n+i}(S^n)$ for i=21 and 22, J. Math. Kyoto Univ. 4 (1965), 301-326. MR 31 #1676.

15. M. Mimura and H. Toda, The (n+20)-th homotopy groups of n-spheres, J. Math. Kyoto Univ. 3 (1963), 37-58. MR 28 #618.

16. S. P. Novikov, Homotopy properties of the group of diffeomorphisms of the sphere, Dokl. Akad. Nauk SSSR 148 (1963), 32-35=Soviet Math. Dolk. 4 (1963), 27-31. MR 26 #1901.

17. ——, Differentiable sphere bundles, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 71–96; English transl., Amer. Math. Soc. Transl. (2) 63 (1967), 217–244. MR 30 #4266.

18. S. Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc. 10 (1959), 621-626. MR 22 #3004.

19. H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, no. 49, Princeton Univ. Press, Princeton, N. J., 1962. MR 26 #777.

20. ——, p-primary components of homotopy groups. IV: Compositions and toric constructions, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 32 (1959), 297-332. MR 22 #1906.

21. C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. of Math. (2) 81 (1965), 56-69. MR 30 #1515.

INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540