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1. Introduction and main results. The Kervaire-Milnor group 
Tn has a filtration by subgroups, 

o = iC.! c • • • C rl+1 c r2 c • • • C rï = r', 
due to Gromoll [9], which we study by means of certain homomor-
phisms 

*P(SOq) ® w^SOp) T*+l ® wq(SOp) 

See [12] for definitions. The pairing a was first introduced by 
Milnor [13] and has been studied in [3], [ l l ] . The pairing r has been 
studied in [8], [ ló] . 

The groups of Gromoll are related to the homotopy groups of 
Diff Sn by a simple pasting construction: namely, there are homo-
morphisms X<:ir<(Diff Sn)->Tn+i+1 with image X< = r f f l + I (see Propo
sition 2.1 and also [9, §1 ]). 

We shall detect nontrivial elements in some r? + 1 . Note that r£+17^0 
implies that T? + 1 ^0 and, hence, 7rt(Diff S * - * - 1 ) ^ , for all i^k. For 
slightly sharper statements see Proposition 3.3 and Proposition 3.4. 

1.1. THEOREM, (a) T g l ^ O , for all k^4. 
(b) T%tiy*0,forallk^0,k7*2l-1. 

Here v(k) is the maximum number of linearly independent vector 
fields on 52*+1. I t is well known that v(k) — 1 when k is even and 
v(k) ^ 3, when k is odd. Its precise value is given in [2]. 

Theorem 1.1 follows from some of our results on <r. Corollary 3.5, 
below, also based on work with a, actually establishes fairly large 
lower bounds for the order of T^Zl (with some restrictions on k). 
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1.2. THEOREM, (a) Let Q be an odd prime, and let u and v be integers 
satisfying 0^v<u^Q-l, u-v^Q-\. Write n = 2(uQ+v + l)(Q-l) 
— 2(u—v) — l. Then, TIQ^I^ZQ. (b) Tl and T™ are nontrivial. 

Theorem 1.2 is proved using r (see Proposition 3.2). I t generalizes 
results in [16]. 

1.3. THEOREM. Diff Sn cannot be dominated by a finite CW complex, 
provided n ^ 7 . 

In particular, for this range of values of nf Diff Sn is not dominated 
by a finite-dimensional Lie group. This answers a question raised by 
J. Eells and R. Palais. 

Theorem 1.3 contrasts with the fact that, for n = l, 2, Diff Sn has 
the homotopy type of SOn+i [18]. The only undecided dimensions, 
therefore, are n = 3,4, 5, 6. 

In §2 we deduce Theorem 1.3 from Theorem 1.1 (a) and Theorem 
1.2 (b). In §3, we describe our results on a and r and give a table of 
low-dimensional computations. In §4, we relate our results to the 
inertia groups IÇ2nXSp), and we comment on Gromoll's pinching 
numbers 8n. 

We would like to thank J. Milnor and N. Kuiper for their stimu
lating suggestions. 

2. Proof of Theorem 1.3. Diff Sn (resp., Diff(S», D\)) is the group 
of all C00, orientation-preserving diffeomorphisms of Sn (resp., those 
which keep fixed the upper hemisphere D\). Give it the C00 topology. 
SOn+i is a closed subgroup of Diff 5 n . I t is well known ([7], [17]) that 
Diff Sn and Diff(5n, D\) have the homotopy type of countable CW 
complexes and that the map SOn+iXDiff(Sn, Dn

+)-*Diff Sn defined by 
group-multiplying the inclusions 

SOn+i C Biff Sn D Diff(5W, Dn
+) 

is a homotopy equivalence. 

2.1. PROPOSITION, (a) The multiplication of Diff(5n, D\) is homo-
topy-abelian. 

(b) Let \;:7Ti(Diff Sn)—>Tn+i+1 be as in §1, and let JU< be its restriction 
to the direct summand 7rt(Diff(5w, -D+)). Then image fii — T£jJ+1* 

Let An = Diff(5W, D\) and note that itiAn = HxAn. 
2.2. PROOF OF THEOREM 1.3. If Diff Sn~SOn+iXAn is dominated 

by a finite CW complex, for some nf then so is Anf and so H*(An; Zp) 
is finitely-generated, for all primes p. According to Browder [ó], 
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therefore, H*An has no torsion. In particular, iciAn~HxAn is free-
abelian. Thus, the projective class group Ko(TiAn) vanishes, so that 
An has the homotopy type of a finite CW complex (Wall [2l]). I t 
now follows from Hubbuck [lO] that the identity component of An 

has the homotopy type of a point or of a product of circles, so that 
WiAn = 0,i}£2. 

Theorem 1.1 (a) and Theorem 1.2 (b), together with Proposition 
3.2 and the subsequent remark, imply that TT\AI and ir\A% have ele
ments of finite order and that, for n*z9, there is some i^2 such that 
TTiAn?*0. Thus, » g 6 as desired. This completes our proof. 

Note that when iriAn has elements of finite order Browder's the
orem alone implies that Diff Sn is not finitely dominated. Our results 
on the r-pairing (Theorem 1.2 and Proposition 3.2) yield infinitely 
many such n, but not enough to prove Theorem 1.3. 

3. The pairings a and r. The Gromoll groups are related to a and 
r by the next two propositions. Let /^:7Ti(Diff(5n, £>+))—»rn+i+1 be as 
in Proposition 2.1 (b). 

3.1. PROPOSITION. For any a, b, O ^ a g g , 0 ^ 6 ^ p , let ia-TrP(SOq-a) 
—*TrP(SOg) and ib:Trq(SOP-ji,)—>7rq(SOp) be the homomorphisms induced 
by the standard inclusions. Write c = a+b + l. Then, there is a homo-
morphism 

gc:Tp(SOq-a) ® 7ra(50„_6) -+7rc(Diff(SP+*~; Z>++a~C)) 

SUCh that fJlcge^Cptq O (ia®ib)-
In particulart image (o-P,q o (ia®%)) C.Tc+i+1. 

3.2. PROPOSITION. For every q>l, there is a homomorphism 

hq:T
P+1 ® wq(SOp) -~>7rq(DiS(SP, £>+)) 

such that fiqhq~Tp+i,a. 
In particular, image Tp+i,aCrg+f+1. 

REMARK. Note that domain rp+i,q is finite, so that if image rp+i,q 

9*0, then 7rfl(Diff(Sp, Dv+)) has elements of finite order. 
To prove Theorem 1.2, we follow Novikov [16] and map Tp+i,q into 

the composition pairing in stable homotopy. Then we apply results of 
Toda [19], [20]. 

The nonzero elements in Theorem 1.1 (b) are Kervaire spheres 
(which, of course, come from <r). We prove Theorem 1.1 (a), for large 
k, by applying the Eells-Kuiper /^-invariant, as in [ l l ] , to Milnor's 
plumbing construction [13] and by using the Barratt-Mahowald 
Splitting Theorem to show that fx takes the same values on image 
(r4r-i.4«~i o (ia®ib) as on the entire image Cir-iAa-u provided 45 — 1 —a 
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>max(2r, 12), and 4r — l—b>max(2$, 12). For small è, we use 
Milnor's method [13] applied to the ju-invariant. 

For sharper results on <rt we generalize some work of D. R. Ander
son [3] and again apply the Barratt-Mahowald Splitting Theorem. 
To describe our conclusions, let 

j m = order image J4m-i and bm = (22m~1 — l)Bmamjm/2tn, 

where Bm is the mth Bernoulli number, and am — \ or 2, according as 
m is even or odd. Write 

Pr,s = 6r+s/g.C.d.(#r+«, brb8). 

3.3. PROPOSITION. Let r and s be integers satisfying r è 6 , s e 6 , 
r < 2 s < 4 r , and write t~r+s. Then, T^l\C\bP^ contains a cyclic group 
of order pr,8. 

3.4. PROPOSITION, (a) Let r, s, t be as in 3.3. Then prf8 is odd and 

(It - 2\ 

(b) Write r = 2d(2e+l). Then pr,r>2*-d-\ 

REMARKS. The lower bound $(2* — l)Qz\)jt/jrj9 is often large. 
For example, if r and s are primes, 7 ^r<s<2r. Then, this bound is 
larger than 28r+*-8/(2r + l)(2.s + l ) . Much stronger but more compli
cated statements are possible. 

When r = sy Proposition 3.3 is essentially Anderson's Theorem 1, 
[3], combined with Proposition 3.1, The proof of 3.4 involves com
plicated but elementary number theory. 

We now display some divisors of T£, k and n small. Results of [14], 
[15], [19], [20] are used for some of the calculations. Recall that 
r ? = r * and r 2 + l c r » . According to Cerf, Tl=*Tn, for all n. For the 
reader's convenience, we give the order of r ^ r ï ^ T " precisely. 

k\n 

2 
3 
4 
5 
6 
7 
8 

13 

3 
3 
3 

IS 

16,256 
4,064 
2,032 
1,016 
508 

19 

523,264 
2,044 
2,044 
2,044 
1,022 
511 
511 

21 

4 
2 
2 
2 
2 

22 

4 
2 
2 

Some divisors of order (Tn
k) 
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When entries are omitted for n ^22, this means that our techniques 
give no additional information. 

4. Remarks on IÇ2v+1XSg) and the Gromoll numbers 8n. 
4.1. I(SXS«)CITK+1, for allXer»*1 and q^2. 
This follows from 3.2 and DeSapio's results on the r-pairing [8]. 
4.2. When p^2q — l, some IÇZp+1XS9) have elements of odd prime 

order. 
This follows from Theorem 2.1 and DeSapio [8], and it contrasts 

with the fact, deducible from [4], that IÇ£p+lXSq) is 2-primary when 
p<2q-l. 

4.3. There are spheres in image <r which are not in image r. 
This follows from the last assertion in 4.2, together with 3.3 

and 3.4 (a). 
4.4. In [9], Gromoll defines an increasing sequence of real Sk 

satisfying Si = 1/4 and lim 5* = 1. He proves that if the sphere Sn can 
be 5k-pinched, then S nGH. Since r j . a = 0, [18], Sn can be Sn-2-pinched 
only if Sn is diffeomorphic to Sn. 

Question 1. Can every sphere in TJ be Sk-pinchedl 
This probably asks too much, since no examples of riemannian 

exotic spheres admitting positive sectional curvature are known. 
Call 5 N-universal if 0 < 8 < 1 and if Sw 5-pinched and n^N imply 

Sn diffeomorphic to Sn. 
Question 2. Does an N-universal h exist, for some N? 
Question 2 was asked by Gromoll [9]. 
We simply remark here that an affirmative answer to either ques

tion implies a negative answer to the other, because V^Zl^O, &è4. 
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