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1. When describing the interior structure of an area minimizing m 
dimensional locally rectifiable current T in jRm+1, one calls a point 
#£sp t r ^ s p t dT regular or singular according to whether or not x 
has a neighborhood V such that VT\spt T is a smooth m dimensional 
submanifold of 2?m+1. As a result of the efforts of many geometers it is 
known that there exist no singular points in case m ^ 6 ; a detailed 
exposition of this theory may be found in [3, Chapter 5]. Recently it 
was proved in [2] that 

„ « , „ s , « s ^ r * , 2 , * i 2 2 . 2 . * . h\ Z = d(E l_R i\ \x:xi + %2 + %z + #4 < #5 + H + #7 + Xa)) 

is a 7 dimensional area minimizing current in R8 with the singular 
point 0. This implies that, for m>7, E"»~7XZ is an m dimensional 
area minimizing current in Rm~7XR8^Rm+1 with the m — 7 dimen­
sional singular set Rm~7X {o}. Here we will show (Theorem 1) that 
the Hausdorff dimension of the singular set of an m dimensional area 
minimizing rectifiable current in Rm+1 never exceeds tn — 7. 

Our method also yields the result (Theorem 2) that the Hausdorff 
dimension of the singular set of an m dimensional area minimizing 
flat chain modulo 2 in R™** never exceeds rn~-2, for arbitrary co-
dimension p. 

2. We use the terminology of [3]. Given any positive integer m we 
choose Ï according to [3, 5.4.7] with n~in+l and let 

<*{T) - {*.-e"d|2l|, *) è T} for T E (CiR**1). 

Whenever 0 ̂ kkÇîR and A CRm+1 we define <t>**(A) as the infimum of 
the set of numbers ]C*€G a(£)2~*(diam B)k corresponding to all 
countable open coverings G of A. We see from [3, 2.10.2] that 
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4>lo(A) = 0 if and only if W(A) = 0, 

and from [3, 2.10.19(2)] that 
• A ; AJ —As A; 

© (̂ co L ^ > ^ 2 for 5C almost all x in A. 
LEMMA 1. If Ö»G&!SC (Rm+1) and Qi is absolutely area minimizing 

with respect to Rm+1for each positive integer i, 

Qi —» Q tn$m (R ) as t ~> oo, 

and K is a compact subset of jRm+1~Clos U^i spt dQif then 

KHQ) C\K]^ lim sup <jt[co(Qi) H K]. 

PROOF. We observe that if V is any open set containing o(Q)r\K, 
then V contains œ(Qi)r^K for all sufficiently large integers i. Other­
wise we could choose a subsequence of points #iGco(Q»)P\JK>^F 
converging to point xÇzK~V. Since 

d «= dist (K, U sptd&J > 0, 

we would find whenever d>r>s>0 that s""m||Q<||l7(#*, s)^a(m)T 
according to [3, 5.4.3(3)], with B(x{, s)C.U(xf r) for large i, hence 

llöH Ufa r) è lim sup ||Q,|| Ufa, s) è « ( » ) T 
i—»oo 

by [3, 5.4.2]. Thus ||(?||l7(tf, r)^rma(m)T for 0<r<S , and we could 
infer that xEo>(Q)r\(K~V) = 0. 

LEMMA 2. If T(EGïl™(Rm+1), T is absolutely area minimizing with 
respect to Rm+\ a Gspt r ~ s p t 3 T and 0 ** [<fe L co(T), a ] > 0, then there 
exists an oriented tangent cone Q of T at a such that 3Cfc[co(Q)] >0. 

PROOF. Assuming © ** [0* L. co ( T), a ] > 2kc > 0 and recalling the proof 
of [3, 5.4.3], in particular the argument on pages 624 and 625, we 
choose pi and j3* for each positive integer i so that 

0 < 2Pi < fl<Ti, <t>i[o)(T) H Bfa Pi)] > a(k)prfc, 

ft* G Gi} pi S (1 - if^lpi < fit < 2pi. 

Then <t& [co(r)P\S(a, /3J"*) ] > a(fe)j37*£ and the corresponding currents 
Q*^ (tM< ° *-a)#2" satisfy the condition <£» [co(<2*)ni?(0, 1)] > a(k)c. 
A subsequence of Qi, Q2, Qz> • • • converges in 9:^c(l?w+1) to an ori-
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ented tangent cone Q of T at at for which <f>\ [o)(Q)rM3(0t l ) ] è a(k)c 
according to Lemma 1. 

THEOREM 1. If T(E(Rl™(Rm+1), mt7 and Tis absolutely area mini­
mizing with respect to Rm+1, then there exists an open set V such that 
VC\spt T is an m dimensional submanifold of class <» of JRm+1 and 

3C*[#m+1 ~ (V W spt dT)] = 0 whenever m - 7 < k G R-

PROOF. We use induction with respect to m. First we will prove the 
following statement: 

If M is an £m+1 measurable set, U is an open subset of Rm+1, 

S = [d(E™+1 L M)] L U G &m(Rm+1) 

and S is absolutely area minimizing with respect to 2?m+1, then there exist 
an open set W such that PFP\spt S is an m dimensional submanifold of 
class oo ofRm+land 

3&(U ~ W) = 0 whenever m — 7 < k G R-

In view of [3, 5.4.7] it suffices to show that 

3Ck[U H œ(S)] = 0 whenever m - 7 < k G R. 

Assuming the contrary we choose k>m—7 and aÇz Ur\œ(S) so that 
©**[#!! co(5), a] >0, apply Lemma 2 to obtain an oriented tangent 
cone C of S at a with 3C*[co(C)]>0, and infer from [3, 5.4.3(5), (8)] 
that C is absolutely area minimizing with respect to Rm+1 and C 
= d(Em + 1L N) for some £m+1 measurable set iV\ Since 3C*{o} =0 we 
can choose &Gco(C)~ {0} so that ©** |#* Lo>(C),*] >0,and repeat the 
procedure to construct an oriented tangent cone D of C at b such that 
3C*[co(D)]>0, Z> is absolutely area minimizing with respect to Rm+l 

and -D = 3(EW+1| P) for some <£m+1 measurable set P . We infer from 
[3, 4.3.16] that D is a cylinder with direction 6/| b\, from [3, 4.3.15] 
that there exist an isometry H mapping R X Rm onto -Rm+1 and a cur­
rent QG(^i(Rm) with £ = ## (ElXQ), and from [3, 5.4.8] that Q is 
absolutely m — 1 area minimizing with respect to Rm. We note that 
dQ = 0 because 3J9 = 0. In case m ^ 8 w e inductively obtain an open 
subset F of Rm such that FP\spt Q is an m — 1 dimensional submani­
fold of class oo of Rm and 3eA'-1(JR

m~F) =0. In case w = 7 we know 
from [3, 5.4.15] that spt Q is a 6 dimensional submanifold of class oo 
of R\ and we take F=JR7. In both cases H(RX F)Hspt D is an m 
dimensional submanifold of class oo of Rm+1 and 

3&[Rm+i ^ H(R x y)] = 3Q,k[R X (Rm ~ F)] » 0 



770 HERBERT FEDERER [July 

by [3, 2.10.45 ]. Since Z) = ô ( £ w + l L P ) we see that 

0W(|| Z>||, x) = 1 for x G H(R X F) H spt Z>, 

hence co(D)Cspt D~H(RX Y) and 3C*[co(Z>)] = 0, which is inconsis­
tent with our previous assertion that 3C* [o)(D) ] > 0. 

To deduce the conclusion of the theorem from the statement veri­
fied above we suppose aÇzRm+1~spt dT and proceed as in [3,5.3.18] 
to find a positive number p and a representation 

TL U(o, p) = S 5 , with | | r | | L U(a, p) = E \\Si\\, 
iez iez 

where 5» = [d(Em+l [_ Mi) ]L_ U(a> p) for certain £ m + 1 measurable sets 
Mt- such that MiCMi-i; moreover { i : i £ s p t 5 t} is finite whenever 
b(EU(a, p). For each integer i we choose an open set Wi such that 
WiC\spt Si is an m dimensional submanifold of class <*> of Rm+l and 

3C*[l7(a, p) ~ W<] = 0 whenever m - 7 < k € 2*. 

We conclude that 5 = £7(a> p )~Ut € £ (spt 5<~W,-) is open, 

U(a,p)~BC U [CT(a,p)~TrJ , 

3C*[l7(a, p) ~ 5 ] = 0 whenever m - 7 < k E R, 

Br\spt r = u #nspt5t- = u^n^nspts i 9 
iez *ez 

and 5P i sp t T is an w dimensional submanifold of class <» of Rm+1 

because for each bÇzBr\spt T one can reason as in [3, 5.4.15, p. 646] 
with a replaced by b to see that Tan(spt T, b) is an m dimensional 
vector space, hence infer from [3, 5.3.18] that b is a regular point 
for T. 

I t is not yet known whether the conclusion of Theorem 1 could be 
sharpened so as to require that 3Ç,mr~7(K~V)< <*> for every compact 
subset K of spt r ^ s p t d ! * ; in case w=*7 this holds according to 
[3, 5.4.16]. 

3. Next we discuss area minimizing m dimensional chains with 
arbitrary codimension p in Rm+p. When p > 1 the singular set can have 
dimension tn — 2, as illustrated in [3, 5.4.19] by the example of holo-
morphic chains. I t follows from [3, 5,3.16] that the singular set of an 
area minimizing m dimensional rectifiable current T is nowhere dense 
in spt T, but the largest possible value of the dimension of the singu­
lar set is not yet known in case p> 1 and m> 1. 

The situation becomes much simpler when Z is replaced as coeffi-
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cient group by the cyclic group Zz of order 2. Reducing modulo 2 in 
the context of geometric measure theory as explained in [3, 4.2.26], 
one can modify the proof of Theorem 1 to obtain the following 
proposition: 

THEOREM 2. If !T(E(Rw(JRm+*0 and T is homologically area minimiz­
ing modulo 2 with respect to Rm+p

t which means that M(T+dS+2R) 
^M(T) whenever S£tfWi(2?m+*) and RE&m(Rm+p)> then there exists 
an open set V such that FP\spt T is an m dimensional submanifold of 
class oo of Rm+p and 

W*[Rn+p ~ (V VJ spt2 dT)] = 0 whenever supjw - 2, 0} < k G R* 

In fact the extension of our two lemmas from jRm+1 to Rm+*> is 
trivial, the present current T is representative modulo 2, hence 
co(r)^spt2ôr equals the singular subset of spt r ^ s p t ^ T , and the 
induction now starts with the case w = l where the singular set is 
known to be empty. 

For m = 2 it was found in [l, Theorem 3(1) ] that the singular set is 
isolated and spt T^spt^düPis the image of an immersion of a 2 dimen­
sion manifold in R2+p. However, for m > 2 it is not yet known whether 
one could sharpen the conclusion of Theorem 2 so as to require that 
3Q,m~2(K~V) < oo for every compact subset K of spt T~spt2dT. 

Recalling [3, 5.4.4] one sees that Theorem 2 remains valid with Rm+*> 
replaced by any m+p dimensional Riemmanian manifold of class oo. 

For the study of interior regularity of solutions of the problem of 
least area, use of m dimensional flat chains modulo 2 is substantially 
equivalent to use of sets with finite m dimensional Hausdorff measure 
as employed in Reifenberg's approach presented in [4, Chapter 10], 
provided G = Z2 and L is cyclic (see [4, p. 411]). Then our method 
shows that the Hausdorff dimension of the singular set of Reifenberg's 
solution of the m dimensional Plateau problem does not exceed m— 2. 
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