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THEOREM 1. There exists a group g of exponent 5 which is locally 
nilpotent, but not nilpotent. In particular, g is not solvable. 

Thus there exist varieties which are nonsolvable, but locally finite 
and locally solvable. 

To prove Theorem 1, we first show that a certain ring is not nil-
potent. Let R be the free associative ring of characteristic 5 generated 
by noncommuting indeterminates Xi, x2, • • • , and let L be the Lie 
ring in R generated by Xlt X2y * • • where addition in L is the same 
as in R and Lie multiplication is commutation [x, y] =xy— yx in R. 
An element of L will be called a Lie element. 

THEOREM 2. If we impose on R the following identical relations f or 
Lie elements x and y: 

(i) x* «= 0 

and 

(ii) x2y — 3xyx + Syx2 = 0 

then the resulting ring is not nilpotent. 

REMARK. Higgins in [3] showed that (i) and (ii) holds in the endo-
morphism ring of the additive group of a Lie ring satisfying the third 
Engel condition. 

Also worth mentioning is the following result which is equivalent 
to Theorem 2 as shown in Walkup [8]. 

THEOREM 3. There exists a Lie ring of characteristic 5 which satisfies 
the third Engel condition and which is not nilpotent. 

G. Higman [4] and A. I. Kostrikin [5] showed that a Lie ring of 
characteristic 5 satisfying the fourth Engel condition is locally nil-
potent, and in view of Theorem 3, this is the best one can say. 
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Kostrikin [ó], in fact, was able to prove the very general theorem 
that a Lie ring satisfying the nth Engel condition and having prime 
characteristic p > n is locally nilpotent. 

In getting away from the finite generation condition, P. Higgins 
[3] and Heineken [2], showed that an associative ring with charac­
teristic prime to 2, 3, 5 and 7 in which the cube of every Lie element 
is zero must be nilpotent of index at most 39. D. Walkup [8] in his 
thesis improved this result in two ways. First he showed that no re­
striction on the prime 7 is necessary and secondly that the nilpo-
tency index can be greatly reduced. Specifically he showed 

THEOREM 4. Let R' be the free associative ring generated by noncom-
muting indeterminates xi, x2, • • • , with coefficients in a ring in which 
division by 2, 3, and 5 are possible and the cubes of all Lie elements are 
zero. Then R' is nilpotent of index at most 9. 

We sketch the proof of Theorem 2 and the deduction of Theorem 1 
from it. 

Relations (i) and (ii) together are equivalent to the "Higgins rela­
tions", 

(iii) xyz + xzy = yzx + zyx = 2(yxz + zxy) 

for all (homogeneous) Lie elements xy y, z. 
Let H be the ideal of R generated by (iii). Denote by Rn the vector 

subspace of R with basis consisting of all monomials of total degree 
2n and degree 2 in each indeterminate Xiy i = ly 2, • • • , n. Making 
use of the relations (iii), we are able to establish inductively for each 
n^2 the existence of a linear transformation a of Rn onto Z5, the 
integers modulo five, which satisfies: 

(a) a(x\x2
2 • • • xl) = 1. 

(b) a(MN)=a(NM), where M and N are any monomials such 
that MN is in Rn. 

(c) a(M) =a(M')f where M is any monomial in Rn and M' is the 
monomial obtained from it by permuting (the names of) the inde­
terminates. 

(d) a(M) =a(MT), where M is any monomial in Rn and MT is the 
monomial obtained from it by reversing the order of the factors (of 
degree 1). 

(e) a[M(xyz+xzy)] = a[M(yzx+zyx)] = 2<*[M(yxz+zxy)], where 
x, y, and z are chosen from among the generators Xi and M is any 
monomial such that the indicated products are in Rn. 

We then show that the kernel of oty say on , contains HC\Rn% i.e.. 
(e) holds for all Lie elements xt y and z such that Mxyz is in Rn-
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Since x\x% • • • x2
n is not in Sn and hence not in H, R is not nilpotent 

modulo H, establishing Theorem 2. 
Using Bruck's notation in §3 of [ l ] , we can show that Theorem 2 

implies that R is not nilpotent modulo the permutation ideal of TV 
Then, by Theorem 4.3 of [ l ] this last fact implies the negation of the 
statement R(3, w) in Bruck's notes [ l ] , i.e., 

THEOREM 5. There exists a group ring Z&G over the field Z5 of integers 
modulo 5 such that the augmentation ideal of Z5G is not nilpotent modulo 
the ideal I generated by all elements (g — l)3 with g in G. 

To complete the proof of Theorem 1, we use a standard construc­
tion. Let ZzG and I be as in Theorem 5. Define group g to be the set 
of all ordered pairs {g, r}, gE:G, rE:Zf>G/I with the multiplication 

{&'}{*>*} = {**> rh + s}. 

An easy check shows that 9 n a s exponent 5. If a = { l , l } and 
b% = {gh 0 } , then the commutator 

(a, h, b„ • • • , bn) = {1, (ft - Î)(g2 ~ 1) • • • (gn ~ 1 )} . 

Since the augmentation ideal of Z^G is not nilpotent modulo i", 8 is 
not nilpotent, and hence by a theorem of Tobin [7], 9 is not solvable. 
Thus, G is also nonsolvable. 
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