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Let X be a topological space and let S (respectively d) be the 
category of sets (respectively abelian groups). Let S' (respectively 
Q') be the category of sheaves of sets (respectively abelian groups) 
based on Xy and fix a sheaf M in G/. The graded functor Ext*(ikT, — ) 
: Cfc'—>d is computed as the right derived functors of Hom(M', — ), 
and of course Ext*(ikf, N) classifies i-fold extensions of M by N [ô]. 

One would also like to be able to classify extensions in nonabelian 
categories of sheaves. Partial success in this direction has been 
achieved by Gray [5], but he needs to assume restrictions on X as 
well as on M. In [lO], the author applied triple-theoretic [ l] tech
niques to the category of sheaves of .R-algebras (R a sheaf of rings), 
and successfully classified cohomologically singular extensions of an 
i?-algebra P by one of its modules N. 

Specifically, if G is the polynomial algebra cotriple lifted to the 
category of sheaves of /^-algebras, if T is the Godement triple = stan
dard construction [3], and if Der#(P, N) is the abelian group of 
global ^-derivations from P to JV, then the equivalence classes of 
singular extensions of P by N are in one-one correspondence with 
the elements of the first homology group of the double complex 
Dera(G*P, T*N). In §11 of this note we prove that if G is the free 
abelian group cotriple lifted to Cfc' then the nth homology group of 
the double complex Horn ((?*ikf, T*N) is naturally isomorphic to 
Extn(ikf, N). The combination of this theorem and the results in 
[lO] indicates a unified approach to the cohomological classification 
of extensions in many (algebraic) categories of sheaves. 

In §1 one can find a theorem which is part of the folklore of triple-
theoretic cohomology theory, but for which no straightforward proof 
appears in print. The theorem is: if an abelian category has an injec-
tive cogenerator and E is the model-induced triple then Ext*(Af, N) 
and the homology of the complex Horn(ikf, E*N) are naturally 
isomorphic (note that E is not the triple used by Schaf er in [8]). 
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The essence of the proof of this theorem appears as a proposition in 
§1, and we use the proposition again in §11. 

I. Ext*(M, —) is a triple-derived functor. In a number of places 
(e-g- [?], W , [*>]) one can find a proof of the fact that the category 
0/ has an injective cogenerator. Thus one can always find an injec
tive resolution ƒ* for any sheaf N in Ot', and Extw(M, N) is defined 
to be the nth homology group of the complex Hom(ikf, ƒ*). 

On the other hand, if I is the injective cogenerator then we can 
define the "model-induced" triple E=(E, rjt jot) as follows. The 
functor E: Ctr—>Ct7 is given by EN — J\l where the product is taken 
over the set Hom(iV, ƒ). If we write (g): H-T—>I for the coordinate 
projection corresponding to the map g in Hom(iV, I) then the natural 
transformations rj, fx are given by {g)"r)N~g and {g)'lJ<N={(g)). 
Then (E, rj, JJL) is a triple (see [ l ] ) . Moreover, since the product of 
injectives is injective, EN is injective for each N. We have the 
complex 

N->EN~> E*N -> &N - > . - • = E*N 

where d:EkN~>Ek+lN is d~ ] £ t o ( -1)*E^E^~W, hence we can con
sider the homology of the complex Horn (If, £iV)—>Hom(ikf, E2N) 
—»Hom(M, E3N)~-» • • • . Denote the nth homology group of this 
complex by Hn(M, N)E. Then we claim that Hn(M> N)E~Extn(M, N) 
for all w^O. 

LEMMA. The map rjN: N—>EN is a monomorphism. 

PROOF. If/ , f:N'->N are such that rjN-f = riN-f' then we must 
show that ƒ=ƒ ' . Now for each g:N—>I we have g'f=(g)-r]N-f 
= (g)-r]N-f=g'f\ and since I is a cogenerator, ƒ =ƒ'. 

The dual of the following proposition was shown to me by Michael 
Barr. 

PROPOSITION. If the abelian category (B is endowed with a triple E 
such that rj is pointwise monic then N—*E*N is an exact sequence, and 
conversely. 

PROOF. The converse is obvious. On the other hand, if t\N is monic 
for each N in (B then we can build an exact sequence 

0->N->EN~*ECo-*EC1-*EC2-* . . . = ƒ * 

where C~i~N and CVfi is the cokernel of the map rjdlCi—ïECi for 
each i*z — 1. Of course the boundary ECi—>ECi+i is the composition 
of the cokernel map d+ilECi—^Ci+i and rjd+i. If 8 is the injective 
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class determined by the image of E then any two 8-injective and 
8-exact sequences are homo topic [2]. Now N—>E*N is 8-injective 
and 8-exact. Moreover N—*I* is 8-injective, and we now show that 
it is also 8-exact, i.e. that for any N' we have Hom(J*, EN') is exact. 
Given a cocycle flECj-^EN' we have O — df—f-rjCj-Cj and Cj is epic, 
hence f-rjCj — O. But C/+i is the cokernel of rjC}- and so there is a map 
f':Cj+i-±EN' such that ƒ' • cj+1 = ƒ. Now the coboundary of fxN'-Ef' 
: E Cj+1-*EN' is 

dQiN'-Ef) =nN'-Ef'VCj+1'Cj+1 

-vN'-vEN'-f'-c^ 

Thus every cocycle is a coboundary, Hom(J*, EN') is exact, and 7* 
is 8-exact. I t follows that 7* and E*N are homo topic. But 7* is exact, 
hence so is E*N. 

COROLLARY. If E is the model-induced triple on Ofc' defined above then 
for each N in &', N—>E*N is an injective resolution. 

COROLLARY. H*(M, N)E~Ext*(M, N). 

REMARK. The proof works for any abelian category having an 
injective cogenerator. Dually, if an abelian category has a projective 
generator and P is the model-induced co tri pie then H*(M, N)P 
«Ext*(Jlff N). 

II. A double complex yielding Ext*(ilf, N). Consider the following 
diagram of categories and functors: 

S ^ 

Q ^r 
1 nu, 

us 
in which the products are taken over all points x in X. S is the stalk 
functor, i.e. 5 takes a sheaf to the set of its stalks. Q takes a collection 
{AX\ to the sheaf whose value at an open set V is 11-4*, the product 
being taken over all points x in V. U and JJiUx are the obvious 
"underlying" or "forgetful" functors. Fx is the free abelian group 
functor. Given a sheaf N in S', the functor which takes an open set 
V to the free abelian group on the set N( V) is a presheaf of abelian 
groups, and FN is defined to be the sheaf associated to this presheaf. 
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One can show that S is left adjoint to Qy F is left adjoint to U, 
YlFx is left adjoint to T\UXi SU~YLUXS, and QJIUX~UQ. 
Moreover QS is the Godement "standard construction" (see [3]). 
Let T = (T, rjy fx) be the triple associated to QS= T and G = (G, €, S) 
the cotriple associated to FU = G via the adjointnesses. For each M 
in dr we get the complex 

>G*M-+G2M-*GM->M-+0 

dually to the way we got N-*E*N in §1. For each N in (&' we get 
the complex 0—>N-+TN—>T2N-+ • • • as in §1. Hence we have the 
double complex 

C%M, N) = Horn (Gi+1M, T*lN) for i , ; ^ 0 

with boundaries induced by the boundaries in the single com
plexes. Denote the nth homology group of this double complex by 
H*(M, N)G,T. 

THEOREM. Hn(M, N)G,T**Extw(M, N) for each n^O. 

PROOF. I t is well known (see [ó] or [9]) that Ext*(Af, — ) is a 
cohomological ô-functor augmented over Hom(M, — ), and that any 
two such cohomological S-functors are isomorphic. We thus verify 
that H*(M, — )G,T is such a functor. For convenience we write 
H*(M, - ) instead of H*(M9 - ) o , r . 

Given an exact sequence 0~*N'—>N-->N"--»0 in Ot' we need to 
produce an exact triangle 

d 
H*(M, N') -> H*(M, N) -> fl*(Jf, N") -> H*(M, N'). 

Now T is an exact functor [3] and Horn (Gi+1M, — ) is left exact for 
i^O. Thus 

0 -> Horn (G*+W, Z1* W ) -> Horn ( G ^ M , T ^ W ) 

-* Horn (G*+W, r>+W') 

is exact for each i, j ^ O . Moreover, the last map is onto, for consider 
the chain of natural isomorphisms: 

Horn (G i + W, T»lN) « Horn {UGlM, UT*lN) 

« Hom (tfG'Jf, Q l ï W Q ) y . S W ) 

« Hom ÇSUGW, ]JUx(SQySN) 

« Hom (SUGW, (SQyJlUxSN). 

Since iV->iV" is epic, so is SN-+SN" (see [3]) and thus Ü ^ S i V 
—>Ij!7x SN" is a split epimorphism. Hence 
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Hom (SU&M, (SQyJlUsSN) - • Hom (SU&M, (SQyJlU^N") 

is onto. But this map is naturally isomorphic to 

Horn (Gi+lM, T*lN) •-* Horn (Gi+1M, T*+lN"), 

which is therefore onto. 
I t follows that 0->C^(ikf, iVO->C^(M, iV)->C^(M, N")-*0 is exact 

for each iJ^O and that 0->C**(M, iV')->C**(M, N)->C**(M, N") 
—»0 is an exact sequence of double complexes. The exact homology 
triangle is now a standard result of homological algebra. Hence 
H*(M, — ) is an exact ô-functor. 

The proof is completed by showing that H*(M, — ) is augmented 
over Hom(lf , — ) and that Hn(M, —•) is effaceable for each n>0. 
First, H°(M, N) is the intersection of the kernels of the two maps 
C°>°(M, N)-*C»>l(M, N) and C°-°(Mt N)^Cl^(My N). Now eM:GM 
—>ikf is an epimorphism (essentially because the associated sheaf 
functor is exact) and rjN:N—*TN is a monomorphism [3]. Hence by 
the proposition in §1 and its dual, N-+T*N and G*M—±M are exact 
sequences. But Hom( —, —) is left exact and thus 

0 0 0 

•i" ^ v 

0 -* Horn (M, N) -» Horn (GM, N) -> Horn (G2M, N) 

0 -> Horn (M, TN) -> Horn (GM, TN) -> Hom (GW, 2W) 

0 -> Hom (M, rW) -> Horn (GM, T*N) 

is exact. This implies that H°(M, N)~Hom(M, N) and H*(M, - ) 
is augmented over Horn(ikf, — ). 

Finally, to demonstrate the effaceability, let N be injective in Ot'. 
Then rjN:N—>TN is a split monomorphism, say u*rjN = N. As is 
shown in [ l ] , the maps Tnu provide a contraction of the complex 
0->N->T*N. Thus for each j ^ - 1 the column 0*(M, N) is exact 
and has zero homology. I t follows that the total homology of 
C**(M, N) vanishes in positive dimensions, that is, Hn(M, N)—0 
if n>0 and if N is injective. Hence Hn(M1 — ) is effaceable for n>0. 
This completes the proof of the fact that H*(M, — ) is a cohomologi-
cal S-functor augmented over Horn (ikf, — ), which was to be shown. 
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