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In connection with a problem in nonlinear reactor statics, we con
sider eigenvalue problems of the general form: 

(1) Lu + Xb(x)u = g(x, u), x G D, 

(2) p(x)du/dv + a(x)u = 0, x G dD. 

Here we take x = (xi, x2, • • • , xm) and 

A d f" d "I 

*\y»i d#* L oXj J 

(3) Z <*</(*)€<& â a 2 S fc, a2 > 0, fl0(«) à 0,0 (a) > 0 , 

— = JL ni(x)aij(x) —- 0, 

«(*) ^ 0, «(*) + j5(a?) > 0, 

«(#)/?(#) è 0, 

£ ; 

a G d D. 

In addition, the functions a,-y(#) and their derivatives are continuous 
on Z); the boundary is piecewise smooth with exterior unit normal 
n(x) = (ni(x), n2(x), • • • , nm(x)) for xÇEdD. g(x, u) is an analytic 
function of u. 

The following lemma, which is established in substance by A. 
Hammerstein [ l ] , is taken without proof here. 

LEMMA. Let the implicit equation, 

oo oo oo 

(4) E JW* + E «m E M'imï - o 

involving the small parameters € and /*, &e swcfe tóa£ the coefficients Loi 
and L2o (ire nonzero. Then there are exactly two solutions of (4), given 
by e(ju) = ± (L 0 IM/^2O) 1 / 2 [1 +w(p)], wAer^ W(JU)—>0 as /*—»0. 
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Note that e is real only when sgn( JJLQI/L^ = sgn /x. Equation (4) is 
called the "branch equation". 

DEFINITION 1. The "branch point" of (l)-(2) is that value of X, 
say Xo, for which there is a solution of ( l)-(2) , say UQ(X), and such 
that Xo is the principal eigenvalue of 

L<f> + \ob(x)<l> = gu(x, Uo(x))<t>, x G D, 
(5) 

p(x)d<j>/dv + a(x)<j> = 0, x G dD. 

Since X0 is the principal (least) eigenvalue of (5), we can insure, 
according to E. L. Ince [2], that <t>(x) is of one sign in D. This follows 
since <j>(x) has no zeros in D. We can take <j>(x) to be positive without 
loss of generality. 

The integral equation equivalent to (5) is 

(6) <t>(x) = f K(x; 0 M ( 0 - gu(t, **o(0)]<KO^, 
J D 

where K(x\ t), xÇiD and tÇiD, is the kernel corresponding to the 
operator L. 

</>+(#) is the eigenfunction, corresponding to Xo, of the transposed 
kernel K(t; x) [X0&(x)~gw(x, UQ(X))]> and for symmetric kernels 
K(x; t) =!£(/ ; x) is equal to 

(7) <t>+(x) = <r[\0b(x) — gu(x, u0(x))](t>(x). 

This can be shown by multiplying (6) by [X0&(x)-~gu(xt Uo(x))]; here 
a2==l/fD[ÇkQb~gu)<t>]2dx is a normalization constant, where the 
denominator, equal to /z>[£</>]2 dx, is taken to be nonvanishing. 

We point out that the conditions of Definition 1 may not be met 
by any value of X; in this case we say that there is no branch point. 

In order to investigate the existence and uniqueness of solutions for 
X in a small neighborhood of X0, denoted byX£n(X0), we setvzzu — UQ, 
JUEBX— XO and €—JD $vdx. After some effort an associated branch 
equation is obtained where the first few coefficients are given by 

(8) Loi = I dx I dtK(x\t)uQ(t)4>+(x)\ 

(9) Z20 = — | dx \ dt[-K(x; t)gm{U u0(f))<t,2(t)<l>+(x)]. 

In this development an expansion for v(x\ fi) of the form 

(10) v(x; /x) = ez>io(#) + ixvoi(x) + e2v2o(x) + fj,evn(x) + • • • 
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is utilized, and V\o(x) is found to be just equal to 4>{x). 
We are now prepared for our first result. 

THEOREM 1. Suppose that the branch point Xo exists for some UQ(X) > 0. 
Furthermore^ suppose Xo&(x)—•gu(x, UQ(X))>0 for all #£ .D, so that 
<£+(x)>0. Then for all operators L possessing positive kernels K(x\ t) 

(a) if guu(xy u0(x))<0, there are exactly two positive solutions to ( l )~ 
(2) for X<X0 and no solution for X>Xo, when XG9ft(Xo), 

(b) if guu(x, Uo(x))>0, there are exactly two positive solutions to (1)-
(2) for X>Xo and no solution f or X<X0, when X£9ft(Xo). In both cases 
(a) and (b) the two solutions, U\(x\ X) and u%(x\ X), are such that 
Ui(x; X) ^UQ(X) ^U2(X; X). 

PROOF. We give details for (a). Under the conditions given, the 
integrands of the expressions (8) and (9) are positive in D, hence 
sgn Loi = sgn L2o- Then by the lemma there are exactly two real solu
tions to the associated branch equation when /x<0, i.e., X<Xo, and 
no real solution when X>Xo. Furthermore, as JJL—»0, that is, for 
X£9l(X0), e(ju)->± (—LOIM/L 2 0) 1 / 2 . Hence for X<X0, by equation (10) 
and the definition of v(x; JJL), 

(11) u(x] X) = u0(x) ± (-Loi(A - Xo)/£2o)1/2<K*), * G 9l(Ao). 

The two solutions are clearly positive, and greater than and less than 
Uo(x), respectively, for 9l(X0) sufficiently small. The proof of (b) is 
similar. 

Thus the theorem is proved, and an expression for the two solu
tions for X£3l(X0) is derived. B 

The above theorem remains valid if the condition \ob(x) 
— gu(x, UQ(X))>0 is omitted to give a more general result; however, 
the neat condition in (a), guu(x, u0(x))<0, must be replaced by 
L2o>0, and in (b), guu{x, UQ(X))>§ must be replaced by L 2 0 <0. 

The expression (11) for u(x; X) indicates that the intersection of the 
solution surface with any plane x~Xo, XoGA is clearly a parabola 
with vertex atX =X0, U—UQ, whenX£ïïl(Xo). 

I t is of interest to obtain an estimate of the branch point for prob
lems which exhibit the features described by Theorem 1. This work 
has connection with previous work by D. Joseph [3]. 

THEOREM 2. Suppose A0 is the principal eigenvalue of the Helmholtz 
equation 

^ + A 6 ( ^ = 0; xED, 

p(x)d\[//dv + a{x)^ = 0, x G dD. 
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Then X0 is bounded above for case (a) in Theorem 1 by ub(X0), 
and below for case (b) by lb(X0), where 

(13) ub(Xo) = max_ A0 H -L-~ , 
n^o.xeD L b{x)rj J 

(14) lb(Xo) = min_ [A0 + ^ ~ " 1 • 
n^Otx<=D L b{x)rj J 

PROOF. T O show this we combine ( l )-(2) , (12) and Green's first 
formula for L to give 

0 = 1 [uL\l/0 — \t/0Lu]dx 
J D 

— I $o(x)g(x, u(x))dx + A0 I u(x)b(x)dx — X I \po(x)u(x)b(x)dx 
J j) J £> J D 

where ^oW is the eigenfunction associated with A0 and use is made 
of the selfadjointness of the operator L and its associated boundary 
conditions. We assume JD uLx^odx^O. 

Then 

i [A0 + g(x, u(x))/b(x)u(x)]b(x)$o(x)u(x)dx 

x — ^ 

I b(x)\l/0(x)u(x)dx 

where the denominator is nonzero, as can be demonstrated by mul
tiplying (12) by u(x), integrating over D and using the fact that 
fD uhpodx T^O. 

Thus 

MC\ • TA , *(*»?)! ^ ^ TA , *(*>*) 1 
(15) mm_ A0 + - — — = X g max A0 + , 

V^O,XSD L b{x)rj J IÏ^O,xe5 L b{x)rf J 
which gives the bounds on Xo stated above, for the cases described in 
Theorem 1. H 

Note that the inequality (15) is quite general, but acquires signifi
cant meaning for the specific functions g(x, u) whose properties result 
in the cases described in Theorem 1. Tha t is, for these cases the in
equality provides upper and lower bounds for the spectrum of (1)-
(2). 

I t is also possible to obtain an "a priori" estimate of max*^ \uo(x)} 
in the process of computing the bound on X0; namely, m a x ^ {UQ(X) } 
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=7/, where rj maximizes or minimizes the expression [g(x, rj)/b(x)ri] 
îor 7]>0 and x£Z) . 

DEFINITION 2. A solution u(x; X) is said to be a "stable" solution 
if lim^co u*(t, x; X) exists and is equal to u(x; X), where u*(t, x; X) 
=u(x; X)+w(x; \)e~ct is the solution to the related time-dependent 
problem, 

du*/dt + Lu* + \b(x)u* = g(x} u*), x G D, t > 0, 
(16) 

p(x)du*/dv + a(x)u* = 0, * G a/>, * > 0. 

The "stability" of the two solutions described by Theorem 1 has 
been investigated, and it has been determined that for functions 
g(xt u) which are described by (a) of Theorem 1, the smaller solution 
is "stable", while the larger solution is "unstable". The reverse is 
true for functions described by (b). This result follows by the differen
tiation of ( l)-(2) with respect to P = maxa;ep {u(x; X)}, and examin
ing the nature of c for XG9l(Xo) using the resulting equation and (16). 

Finally, both solutions can be obtained by a modification of a 
constructive procedure due to L. Shampine [4], provided g(x, u) 
satisfies a growth condition, 

(L) g(x, *) - g(x, *) = *(*) • (<*> -rt) for ^ f 

THEOREM 3. Suppose there are twice continuously differentiable func
tions y(x), Y(x) such that y(x) ^ Y(x) for XÇLD and 

Ly(x) + \b(x)y(x) ^ g(x, y(x)), x G D9 

/3(x)dy/dv + a(x)y = 0, a; G dD, 

LY(x) + Xb(x)Y(x) g g(x, Y(x))3 x G D, 

p(x)dY/dv +ja(x) 7 = 0, xEdD. 

Suppose g(x, <!>) is continuous and satisfies (L) on the set 

S = [(*, <l>)\x G D, yix) ^ <t> = Y(x)]. 

Let N denote a nonnegative integer, 0, 1, 2 • • • , and let A0 be the princi
pal eigenvalue of (12). For any X in JVAo ^X ^ (N+ 1)A0 and for suitable 
2o(x), define the sequence \zn(x)\ by 

Lzn(x) + (X — NA0)b(x)zn(x) = g(x, zn-i(x)) 

(17) + k(x)[zn(x) — Zn-i(x)] — NA0b(x)zn-i(x), x G D9 

P(x)dzn/dv + a(x)zn = 0, x G d # . 

Then if Zo(x)—y(x)1 the sequence converges monotonely and uniformly 
upwards to the least solution of ( l)-(2) which lies above y(x) (and below 
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F(x)). If ZQ(X)= Y(X)> the sequence converges monotonically and uni
formly downwards to the greatest solution of ( l)-(2) which lies below 
Y(x) (and above y(x)). 

The proof of this theorem follows arguments similar to those util
ized both by Shampine and by D. Cohen [S], who treats a problem 
similar to (l)-(2) ; these arguments are omitted here. 

We note that instead of k(x), one can use gu(x, z»_i(#)) in the con
structive procedure (17), provided the first partial derivative exists 
and satisfies (L). The advantage is one of more rapid convergence. 

Two examples have been studied as illustrations of the above 
results, and both branches of the parabolic curve traced out by (11) 
in the plane x = x0> # o £ # , where u(xo) =maxa;el>{w(x; X)} have been 
obtained by the iterative formula (17). These will be published in a 
future paper, along with details for the above results. 
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