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1. Statement of results. Let D be a domain obtained from the open 
unit disk A by deleting a sequence of disjoint closed disks A» converg­
ing to 0. We assume that the centers cn and radii rn of the Aw satisfy 
the following two conditions: 

I £w-f-i I 
(i) —: :— :g a < 1 for all n è 1, and 
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Let H™{D) be the uniform algebra of bounded analytic functions on 
D and let Wl(H»(D)) be the maximal ideal space of H«(D). The 
Gleason parts of H°°(D) are the equivalence classes in ^K(H°°(D)) 
defined by the relation ||</>— ̂ || < 2 , where || -|| is the norm in the dual 
of H"(D). 

With the above assumptions on D we have the following results. 

THEOREM 1. D is dense in the maximal ideal space of H°°(D). 

THEOREM 2. The Gleason parts of H°°(D) are all one-point parts or 
analytic disks, with the exception of the part containing D. 

The set of homomorphisms <j> of H"°°(D) for which <j>{z) = 0 , where z 
is the coordinate function on D, is called the "fiber over 0," and is 
designated by 3TC0. 3TCo contains the "distinguished homomorphism" 
0o defined by 

LTTl J bD Z 

If z tends to zero in such a way that 

lim ( lim inf J = oo 
j\r-*oo \ s-K) n^N rn / 

then f(z) tends to #o(jO for all /GH°°(J9), that is, z tends to $0 in 
^(H^iD)). <f>o is in the same Gleason part as D (cf. [5]). 

1 The preparation of this paper was supported in part by NSF Grant No. GP-7710. 
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Let N be the set of nonnegative integers, jSiV its Cech compactifi-
cation, and J3N=fiN\N. 

THEOREM 3. The Gleason part containing D is the union of D and a 
subset E of the fiber over zero. The set E is homeomorphic to the quotient 
space obtained from J3(N) XA by identifying J3(N) X {0} to the point <£o-
Each of the functions in HCC(D) is analytic on each slice of J3(N) XA. 

The remainder of this note will be devoted to indicating how these 
theorems are proved, and how they can be extended to more general 
domains. 

2. The algebra H°°(AXN). The algebra #°°(AXiV) of bounded 
functions on AXN which are analytic on each slice Ax{n} becomes 
a Banach algebra, when endowed with the supremum norm. 

LEMMA 1. AXN is dense in the maximal ideal space ^K(H°°(AXN)) 
ofH«>(AXN). 

PROOF. Suppose/I, • • • , fn<EH«>(AXN) satisfy \fx\ + • • • + | / n | 
^ S > 0 on A X N . We must find gi, • • • , gn&H™(AXN) satisfying 
/Tlf;gf = 1. By Carleson's solution of the corona conjecture for the 

unit disc A, there are functions gim, • • • , gnmCzH°°(Ax{m}), such 
that 53ja,i/igim = l on Ax{m}, and such that \gjm\ SM> where M 
depends only on ô. The gym then determine functions gyÇH^AX-AO 
which do the trick. 

Now H°°(A) can be considered a subalgebra of C(Y)y where Y is 
the maximal ideal space of L°°(öA, dB). In fact, i?°°(A) is a strongly 
logmodular algebra on F, in the sense that every U(ECR(Y) is equal 
to log | / | , for some ƒ Gil0 0 (A). Regarding iJ°°(AX { w } ) a s a subalge­
bra of C ( F x { m } ) , we see that H°°(AXN) becomes an algebra on 
the Cech compactification jS(FXiV) of YXN. 

LEMMA 2. IIe0(AXN) is a strongly logmodular algebra on fi(YXN). 

PROOF. Let U^CR(P(YXN)), and let um be the restriction of u to 
FX {m}. There isfmGH«>(AX {m}) such that log \fn\ umj re garded 
as functions on F X {m}. The fm determine a function ƒ G H*° (AX N) 
such that log | / | =u on FXiV, and hence on fi(YXN). Tha t does it. 

Now consider the function ZELH^(AXN)1 defined by Z(X, »)=X. 
Then | |z | | = 1 . The Gelfand transform of Z will be denoted by Z. 

LEMMA 3. The subset of (M(HQO(AXN)) on which \z\<\ is homeo­
morphic to AX(3(N). 

PROOF. T O each pair (X, p)(EAXfi(N) corresponds the homo-
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morphism of H°°(AXN) which assigns to ƒ = {ƒ,};! x GiJ00 (A XN) the 
value of the bounded sequence {/XA)}^ at p. This correspondence 
is easily seen to be the desired homeomorphism. 

Now the closure of each A X {m} is an open subset of 9fil (iJ00 (A X N) ). 
Let X be the space obtained from 9iïl(i?°°(AXiV)) by deleting the 
closures of the A X { w } , w ^ l , and by identifying Z~l($) to a point. 
Let A be the subalgebra of C(X) obtained by restricting to X the 
functions in H°°(AXN) which are constant on Z-^O). In other words, 
A is the linear span of ZHco(AXN) and the constants, regarded as 
continuous functions on X. 

LEMMA 4. A is a uniform algebra on X, whose maximal ideal space 
is X. The set EÇ1X on which \Ê\ <lis homeomorphic to A Xjô(iV), with 
{0} X$(N) identified to a point. It forms a Gleason part of A. The 
remaining Gleason parts of A are either points or analytic disks. 

PROOF. This lemma is easy to verify. The statement concerning 
the Gleason parts follows from the logmodularity of ü00 (A X iV), and 
the embedding theorem for analytic disks (cf. [3]). 

Note that E is not dense in X. In fact, the function fGH00(AXiV), 
defined by ƒ(z, n)=zn, vanishes identically on E, while | / | = 1 on 
/3(YXN), and hence on the Shilov boundary J3(YXN) of A. 

3. The isomorphism of the fiber and the fringe. The pairwise 
disjoint sequence of disks Dc

n with centers cn and radii ((1— a)/2)cn 

have the property that every /£22"°°(A*) for which | | / | | â l satisfies 
| / | ^ ( 2 / ( 1 — a)) rn/\cn\ in Dn. This, together with condition (ii), 
gives 

LEMMA 5. If e > 0 and M>0 are given, then there exists an integer Q 
such that: ///wGi?°°(Ac

n), ƒ„(«>) = 0 , and \\fn\\^M, then 

E { | / m ( s ) | :m^Q} <e if z £ U{ Dn: n ^ Q], 

Z { I ƒ»(«) \:m^Q,m^n} <e if z G Dn. 

In particular, J2fn converges uniformly on compact subsets of D to 
a f unction ƒ G JET00 (£>). 

For f <EH"(D) define 

1 f f(Qdt c 
tfV)(»)=—: 7 ^ ' *GAW . 

2TT* J dAn £ — z 

Then Pn is a projection of H°°(D) onto the functions in Zf°°(A )̂ which 
vanish at 00. Moreover P3Pk = 0 if jVfe and supn | |Pw | | < 00 . If {/w| is 
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as in Lemma 5, then PnCJL,fm) =ƒ*». Applying Lemma S to {Pnf}, we 
have that ^Pnf converges uniformly on compact subsets of D to ƒ 
and f(z)—*#()(ƒ) as z—>0, sE.D\UAi. Further, 

LEMMA 6. Given €>0 , there is a Q such that for all / G i î 0 0 ^ ) 
\f(z)-(PJ)(z)-4>o(f)\ <€ /or n^Qand sGDn \A„. 

Let Lw0s) — rn/(z — cn), and define 

*(ƒ)(*, ») = (Pnf)(L~n\z)) + *„(ƒ), ƒ G ff"(Z>). 

ThenSF is a continuous linear isomorphism of H°°(D) and those func­
tions in H<X>(AXN) which are constant on ^~"1(0). Moreover, if 
fÇ:Hw{D) vanishes on the fiber over 0, then 9(f) vanishes on the 
"fringe" 

9TC(#°°(A X i \ 0 ) \ ( Û A X { n } \ 

Hence Ŝ  determines a continuous linear operator © from H001 3TC0 to 
the algebra A defined in Lemma 4. 

LEMMA 7. The map © /rem H<a(D) | 3fTC0 /0 4̂ is aw isometric (algebra) 
isomorphism. 

PROOF. By Lemma 6, there is a Q for which 

I Pn(fg) + Mfg) ~ (iV + Mf)KPng + Ug)) | < 6 

if w ^ Q and zEDn\An. Composing with L" 1 and using the maximum 
modulus principle in A we have that 

I 9(fg)(z, n) - ¥(ƒ)(*, n)9(g)(z, n) | < e 

for large w, and hence that © is multiplicative. Tha t © is isometric 
follows easily from Lemma 6, the fact that /(z)—»#<>(ƒ) as z—»0, 
zGD\[)Dn, and the fact [5] that ||/||a»0 = lim supD32-o \f(z)\ for all 
f^H(X>(D). As was noted after Lemma 5, P»(X)/m)=/n, so that the 
image of 9 covers ZH°°(AXN) and hence © is onto A. 

PROOF OF THEOREM 1. Let 0 be a homomorphism of H°°(D). If cj> 
is not in the fiber at 0 then Carleson's corona theorem can be used to 
show that <f> is in the closure of D. Also, #0 is the closure of D. Assume 
that 05^00 is in the fiber over 0. By Lemma 7, cf> defines a homo­
morphism of A and hence a homomorphism <£ of H°°(AXN). $ is 
characterized by the fact that <?(*(ƒ)) =</>(ƒ) for all fEH">(D). Recall 
that ZEHco(AXN) is the function defined by Z(X, n) =X. For pEN, 
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define IpEH^iAXN) by setting 7P(X, n) = 1 if n^p, and Ip(k, n) = 0 
if w < £ . <£ will satisfy $(Z)?*0 and, for each £ £ N , <£(/p) = l . 

Let / i , • • • , fkEH"(D) and 0 < e < 10(Z) | /2 be given. We will show 
there is a point sG-D for which |/»(s)—#(ƒ<) | <2e for i = l , • • •, &. 
Let £6 iV . By the density of AXN in m(H°°(AXN)) there is a 
(X, tt)GAXJV with |¥(ft)(X, n)-*C*(f«)) | <e for l ^ ^ f e , |Z(X, n) 
- 0 ( Z ) | < e a n d , |/p(Xf » ) - # ( ƒ , ) | <e. In particular, | \ | > | <f(Z)|/2, 
and n^p. lî p was chosen sufficiently large, the last two inequalities 
guarantee that L~1ÇK)(E.Dn\An. Hence, if p is also larger than the Q 
of Lemma 6, then L~1Çk)ÇzD and 

l/<(z^(x))-*(A)| 

= I ML:\\)) - (pnmC(\)) - *O(A)+^(/*)(x, n) - <K*CA-)) i 
g 2e for i = 1, • • • , k. 

4. Results for more general domains. These same techniques can 
be used to prove the following corona theorem. 

THEOREM. Let E be a domain f or which E is dense in 2fR(iJ°°(E)). 
Let D be a domain obtained from E by excising a sequence of disjoint 
closed disks A(cn; r»), which satisfy the following conditions: 

(i) There exists a disjoint sequence of disks A(cn; sn) contained in E 
with ^2rn/sn < oo , 

(ii) bE contains all the limit points of {cn}. 
Then D is dense in °nc(H"(D)). 

Note tha t this theorem includes Theorem 1 by taking £ = A \ { o } . 
The proof involves describing the maximal ideal spaces of the fibers 
of H™(D) over dD. These fibers become immensely more compli­
cated, though, in the general case, than in the simple case we have 
described. 
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