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Let S be an abelian idempotent semigroup. Let T be a semigroup 
of semicharacters on 5 containing the identity semicharacter. A 
semicharacter on a semigroup S is a nonzero, bounded, complex 
valued function on 5 which is a semigroup homomorphism. A semi-
character on an idempotent semigroup is an idempotent function, 
and hence can assume only the values zero and one. We define 
Af= {sGS| / (s) = l } and / , = { s G S | / ( s ) = 0 } for each f ET, and we 
denote by A the Boolean algebra of subsets of 5 generated by the 
sets J/(fÇzT). If X— {fu • • •, fn} is a finite subset of T, <rÇzTn (Tn 

denotes the Boolean algebra of all ^-tuples of zeros and ones), we 
define 

(i) B(X,<T) = { n Afi}r\{ n j f i } . 
a (0 -1 *(0-o 

Clearly, A consists of finite unions of sets of the form (1). If F is a 
function on T, X and a are as above, we define an operator L by 

(2) L(X, <r)F - £ „(«r, T)F( Ufï"), 
reTn Tfc<r 

where 

= 0 otherwise, 

is the Möbius function for Tn [3]. Here \a\ denotes the number of 
ones in the w-tuple a. We call F a function of bounded variation on 
T i f 

(3) sup £ \L(X,a)F\ < oo, 

where the supremum is taken over finite subsets X of T. The norm of 
F is the number defined by (3). Finally, we say that F is positive 
definite if 

(4) L(X, a)F è 0 
1 These results were obtained in the author's doctoral dissertation written at the 

University of Utah under the direction of Professor Joseph L. Taylor. 
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for all finite subsets X of T and all corresponding a. Each of (2), (3), 
and (4) makes sense for functions on any abelian, idempotent semi­
group with identity. I t follows that the functions of bounded varia­
tion on any abelian, idempotent semigroup with identity form a 
partially ordered (in the obvious manner via (4)), normed linear 
space. 

Let fj. and v be two finitely additive measures defined on the 
Boolean algebra A. A convolution product of fi and v is defined by 

(5) „ * v(E) = n X ricrKE)) (E G A), 

where a: SXS—+S is the multiplication map on 5. The measure 
pXv is defined on the Boolean algebra (not (7-algebra) of subsets of 
SXS generated by rectangles E X F (E, FE.A). The fact that ar\E) 
is a finite union of such rectangles for each EC:A makes (5) meaning­
ful. 

We illustrate the above definitions with a simple but important 
example. 

EXAMPLE 1. Let 5 be the semigroup [0, l ] , under maximum multi­
plication (x-y = m&x(x, y) for*, yE[0, l ] ) . Let T= {x[o,*]|*E [0, l ] } 
be the given semigroup of semicharacters on 5. Note that T, under 
pointwise multiplication, is a semigroup isomorphic to [0, l ] , under 
minimum. The Boolean algebra A in this example consists of finite 
unions of left-open, right closed intervals and the single point 0. A 
function on T is of bounded variation in the sense of (3) if and only 
if it is of bounded variation (on [0, l ] ) in the classical sense. If F is 
a function of bounded variation on [0, l ] , then the norm of F given 
by (3) is precisely the classical norm (||E|| = | F(0)\ + V(F), where 
V(F) is the total variation of E). 

Detailed proofs of the following theorems will appear elsewhere. 
Theorem 1 is established by purely algebraic methods involving 

the close relationship between the Boolean algebra A and the semi-
characters in T. 

THEOREM 1. There exists an order-preserving isomorphism /i—»# 
between the algebra of all finitely additive measures on A, under convolu­
tion multiplication, and the algebra of all functions on T, under point-
wise multiplication. The f unction jl is defined by fi(f) =n(Af) for each 
f ET. 

Theorem 2 follows trivially from Theorem 1. 

THEOREM 2. The algebra M (A) of all bounded, finitely additive 
measures on A, under convolution multiplication and total variation 
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norm, is a Banach algebra. The algebra BV(T) of all functions of 
bounded variation on T, under pointwise multiplication and bounded 
variation norm, is a Banach algebra. The map fi-^fi, defined in Theorem 
1, maps M {A) isomorphically and isometrically onto BV(T). 

The map /x—»#, in the setting of Example 1, is an extension of the 
relationship between bounded regular Borel measures and functions 
of bounded variation on [0, l ] . The relationship between (1) and 
(2) is 

(6) y.(B{X, a)) = L(X, *)fi, 

where p is a finitely additive measure on A. Thus the operator L gives 
an inversion formula for /-i—»#. For fixed X, this inversion formula is 
a simple application of combinatorial analysis involving the Möbius 
and zeta functions. The relevant combinatorial analysis can be found 
in Rota's paper on Möbius functions [3], 

A Radon-Nikod^m theorem can be proved in this context. Let v 
and jLt be measures on A with v absolutely continuous with respect to 
/ j . Let 

(7) wx - £ (P(B(X, <r))MB(X, tr)))xa(x,,) 
ceTn 

be a simple function on 5 defined for each finite subset X = {/i, • • •ƒ,»} 
of T. We define v(B(X, a))/ix(B(X, a)) = 0 whenever p(B(X, <r)) = 0 
(and hence v(B(X, a)) =0 ) . A corresponding measure vx is given by 
vx{E)=fEwxdix (E£^4) . The measures vx form a net, ordered by 
X^ Y if XC. Y. The proof of the following theorem relies heavily on 
Darst 's Radon-Nikod^m theorem [ l ] . 

THEOREM 3. Let v and p be two bounded measures on A with fx positive 
and v absolutely continuous with respect to JJL. Then the net {vx} defined 
above converges to v in total variation norm, and the net {wx} of simple 
functions converges in fx-measure. 

Theorem 3 allows us to compute the Radon-Nikod^m net {wx} 
directly from the functions P and j&. In fact, it follows from (6) and 
(7) that 

wx = Z ( W CT)P/L(X, a)p)XB,xtay 
a 

The quotient L(X, <T)P/L(X, a)fi plays the same role as the difference 
quotient (G(x)—G(y))/(F(x) — F(y)) does in defining the derivative 
dG/dF for functions on [0, l ] . We point out that the net {wx} is the 
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closest thing to a Radon-Nikod^m derivative possible in our setting 
since the measures v and 11 are only finitely additive. If v and fx are 
extendable to countably additive measures on some (7-algebra over 
S containing A, then we can prove using [l] that {wx} converges in 
Ll(jx) norm to the actual Radon-Nikod^m derivative dv/dix. 

Our next theorem states that the algebra B V(T) of all functions of 
bounded variation on an abelian idempotent semigroup T with iden­
tity is a semisimple, commutative convolution measure algebra in 
the sense of [4]. A convolution measure algebra is roughly a lattice 
ordered Banach space with a multiplication which makes it a Banach 
algebra and relates appropriately to the norm and the order. A pre­
cise definition can be found in [4]. Our proof is straightforward. We 
first show the existence of an order preserving, linear isometry of 
BV(T) onto the ordered Banach space of all bounded, finitely addi­
tive measures on a Boolean algebra. We use this isometry and Darst's 
Radon-Nikod^m theorem [l] to verify a technical condition given 
in the definition of a convolution measure algebra. The norm in­
equality 

WI^IHIINI (F,GeBV(T)) 
is proved directly using the Möbius and zeta functions. These remarks 
combine to yield 

THEOREM 4. Let T be an abelian idempotent semigroup with identity. 
Then the algebra BV(T) of all f unctions of bounded variation on T, 
under pointwise multiplication of functions, is a semisimple, commuta-
tive convolution measure algebra. 

Theorem 4 enables us to apply Taylor's structure theory for semi-
simple, commutative convolution measure algebras [4] to the algebra 
BV(T). Accordingly, there exists a compact topological semigroup 5, 
called the structure semigroup of BV(T), and an embedding F—>FS 

of B V(T) into M(S) (the bounded regular Borel measures on S under 
convolution) such that each complex homomorphism of BV(T) has 
the form h/(F) =JsfdFs for someƒ£»§ (the continuous semicharacters 
on 5). Let M be the image of the map F—>Fs. The point evaluation 
map hx (hx(F) = F(x) for xÇzT, FÇi.BV(T)) is a complex homomor­
phism of BV(T). Let fx be the semicharacter in BV(T) which corre­
sponds to the homomorphism hx\ in this manner, each # £ r is identi­
fied with some ƒ*£»§. We can now prove the following theorem. 

THEOREM 5. Let T be an abelian idempotent semigroup with identity. 
Then there exists a compact topological semigroup 5, an L-subalgebra M 
of M(S), and a semigroup isomorphism x-*fx of T into Ê such that: 
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1. Each complex homomorphism h of M has the form hfji) = fsfdfj, 
= fi(f)for somefES. 

2. If we consider T<ZS via the embedding x—>fx, then the map /x—>jCtJ T 
is an isomorphism and order preserving isometry of M onto BV(T). 

The semigroup T can be embedded in the semigroup (under point-
wise multiplication) § as an idempotent subsemigroup which clearly 
separates points in B V(T). However, S itself need not be idempotent. 
A modification of an example given in [2 ] provides a counterexample. 
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