MEASURE ALGEBRAS AND FUNCTIONS OF BOUNDED VARIATION ON IDEMPOTENT SEMIGROUPS¹

BY STEPHEN E. NEWMAN

Communicated by Gian-Carlo Rota, April 1, 1969

Let S be an abelian idempotent semigroup. Let T be a semigroup of semicharacters on S containing the identity semicharacter. A semicharacter on a semigroup S is a nonzero, bounded, complex valued function on S which is a semigroup homomorphism. A semicharacter on an idempotent semigroup is an idempotent function, and hence can assume only the values zero and one. We define $A_f = \{s \in S | f(s) = 1\}$ and $J_f = \{s \in S | f(s) = 0\}$ for each $f \in T$, and we denote by A the Boolean algebra of subsets of S generated by the sets $J_f(f \in T)$. If $X = \{f_1, \dots, f_n\}$ is a finite subset of T, $\sigma \in T_n$ (T_n denotes the Boolean algebra of all n-tuples of zeros and ones), we define

(1)
$$B(X,\sigma) = \Big\{ \bigcap_{\sigma(i)=1} A_{f_i} \Big\} \cap \Big\{ \bigcap_{\sigma(i)=0} J_{f_i} \Big\}.$$

Clearly, A consists of finite unions of sets of the form (1). If F is a function on T, X and σ are as above, we define an operator L by

(2)
$$L(X,\sigma)F = \sum_{\tau \in T_n} \mu(\sigma,\tau)F(\prod_{\tau \geq \sigma} f_i^{\tau(i)}),$$

where

$$\mu(\sigma, \tau) = (-1)^{|\tau| - |\sigma|}$$
 $\tau \ge \sigma$,
= 0 otherwise,

is the Möbius function for T_n [3]. Here $|\sigma|$ denotes the number of ones in the *n*-tuple σ . We call F a function of bounded variation on T if

(3)
$$\sup_{X} \sum_{\sigma \in T_{\sigma}} |L(X, \sigma)F| < \infty,$$

where the supremum is taken over finite subsets X of T. The norm of F is the number defined by (3). Finally, we say that F is positive definite if

$$(4) L(X,\sigma)F \ge 0$$

¹ These results were obtained in the author's doctoral dissertation written at the University of Utah under the direction of Professor Joseph L. Taylor.

for all finite subsets X of T and all corresponding σ . Each of (2), (3), and (4) makes sense for functions on any abelian, idempotent semi-group with identity. It follows that the functions of bounded variation on any abelian, idempotent semigroup with identity form a partially ordered (in the obvious manner via (4)), normed linear space.

Let μ and ν be two finitely additive measures defined on the Boolean algebra A. A convolution product of μ and ν is defined by

(5)
$$\mu * \nu(E) = \mu \times \nu(\alpha^{-1}(E)) \qquad (E \in A),$$

where $\alpha: S \times S \to S$ is the multiplication map on S. The measure $\mu \times \nu$ is defined on the Boolean algebra (not σ -algebra) of subsets of $S \times S$ generated by rectangles $E \times F$ (E, $F \in A$). The fact that $\alpha^{-1}(E)$ is a finite union of such rectangles for each $E \in A$ makes (5) meaningful.

We illustrate the above definitions with a simple but important example.

EXAMPLE 1. Let S be the semigroup [0, 1], under maximum multiplication $(x \cdot y = \max(x, y) \text{ for } x, y \in [0, 1])$. Let $T = \{\chi_{[0,x]} | x \in [0, 1]\}$ be the given semigroup of semicharacters on S. Note that T, under pointwise multiplication, is a semigroup isomorphic to [0, 1], under minimum. The Boolean algebra A in this example consists of finite unions of left-open, right closed intervals and the single point 0. A function on T is of bounded variation in the sense of (3) if and only if it is of bounded variation (on [0, 1]) in the classical sense. If F is a function of bounded variation on [0, 1], then the norm of F given by (3) is precisely the classical norm (||F|| = |F(0)| + V(F), where V(F) is the total variation of F).

Detailed proofs of the following theorems will appear elsewhere. Theorem 1 is established by purely algebraic methods involving the close relationship between the Boolean algebra A and the semi-characters in T.

THEOREM 1. There exists an order-preserving isomorphism $\mu \rightarrow \hat{\mu}$ between the algebra of all finitely additive measures on A, under convolution multiplication, and the algebra of all functions on T, under pointwise multiplication. The function $\hat{\mu}$ is defined by $\hat{\mu}(f) = \mu(A_f)$ for each $f \in T$.

Theorem 2 follows trivially from Theorem 1.

THEOREM 2. The algebra M(A) of all bounded, finitely additive measures on A, under convolution multiplication and total variation

norm, is a Banach algebra. The algebra BV(T) of all functions of bounded variation on T, under pointwise multiplication and bounded variation norm, is a Banach algebra. The map $\mu \rightarrow \hat{\mu}$, defined in Theorem 1, maps M(A) isomorphically and isometrically onto BV(T).

The map $\mu \to \hat{\mu}$, in the setting of Example 1, is an extension of the relationship between bounded regular Borel measures and functions of bounded variation on [0, 1]. The relationship between (1) and (2) is

(6)
$$\mu(B(X,\sigma)) = L(X,\sigma)\hat{\mu},$$

where μ is a finitely additive measure on A. Thus the operator L gives an inversion formula for $\mu \to \hat{\mu}$. For fixed X, this inversion formula is a simple application of combinatorial analysis involving the Möbius and zeta functions. The relevant combinatorial analysis can be found in Rota's paper on Möbius functions [3].

A Radon-Nikodým theorem can be proved in this context. Let ν and μ be measures on A with ν absolutely continuous with respect to μ . Let

(7)
$$w_{X} = \sum_{\sigma \in T_{\mathbf{n}}} (\nu(B(X, \sigma)) / \mu(B(X, \sigma))) \chi_{B(X, \sigma)}$$

be a simple function on S defined for each finite subset $X = \{f_1, \dots, f_n\}$ of T. We define $\nu(B(X, \sigma))/\mu(B(X, \sigma)) = 0$ whenever $\mu(B(X, \sigma)) = 0$ (and hence $\nu(B(X, \sigma)) = 0$). A corresponding measure ν_X is given by $\nu_X(E) = \int_E w_X d\mu$ ($E \in A$). The measures ν_X form a net, ordered by $X \leq Y$ if $X \subset Y$. The proof of the following theorem relies heavily on Darst's Radon-Nikodým theorem [1].

THEOREM 3. Let ν and μ be two bounded measures on A with μ positive and ν absolutely continuous with respect to μ . Then the net $\{\nu_X\}$ defined above converges to ν in total variation norm, and the net $\{w_X\}$ of simple functions converges in μ -measure.

Theorem 3 allows us to compute the Radon-Nikodým net $\{w_X\}$ directly from the functions \hat{p} and $\hat{\mu}$. In fact, it follows from (6) and (7) that

$$w_X = \sum_{\sigma} (L(X, \sigma)\hat{\nu}/L(X, \sigma)\hat{\mu})\chi_{B(X, \sigma)}.$$

The quotient $L(X, \sigma)\hat{\rho}/L(X, \sigma)\hat{\mu}$ plays the same role as the difference quotient (G(x)-G(y))/(F(x)-F(y)) does in defining the derivative dG/dF for functions on [0,1]. We point out that the net $\{w_X\}$ is the

closest thing to a Radon-Nikodým derivative possible in our setting since the measures ν and μ are only finitely additive. If ν and μ are extendable to countably additive measures on some σ -algebra over S containing A, then we can prove using [1] that $\{w_X\}$ converges in $L^1(\mu)$ norm to the actual Radon-Nikodým derivative $d\nu/d\mu$.

Our next theorem states that the algebra BV(T) of all functions of bounded variation on an abelian idempotent semigroup T with identity is a semisimple, commutative convolution measure algebra in the sense of [4]. A convolution measure algebra is roughly a lattice ordered Banach space with a multiplication which makes it a Banach algebra and relates appropriately to the norm and the order. A precise definition can be found in [4]. Our proof is straightforward. We first show the existence of an order preserving, linear isometry of BV(T) onto the ordered Banach space of all bounded, finitely additive measures on a Boolean algebra. We use this isometry and Darst's Radon-Nikodým theorem [1] to verify a technical condition given in the definition of a convolution measure algebra. The norm inequality

$$||FG|| \le ||F||||G|| \quad (F, G \in BV(T))$$

is proved directly using the Möbius and zeta functions. These remarks combine to yield

THEOREM 4. Let T be an abelian idempotent semigroup with identity. Then the algebra BV(T) of all functions of bounded variation on T, under pointwise multiplication of functions, is a semisimple, commutative convolution measure algebra.

Theorem 4 enables us to apply Taylor's structure theory for semisimple, commutative convolution measure algebras [4] to the algebra BV(T). Accordingly, there exists a compact topological semigroup S, called the structure semigroup of BV(T), and an embedding $F \rightarrow F_S$ of BV(T) into M(S) (the bounded regular Borel measures on S under convolution) such that each complex homomorphism of BV(T) has the form $h_f(F) = \int_S f dF_S$ for some $f \in \hat{S}$ (the continuous semicharacters on S). Let M be the image of the map $F \rightarrow F_S$. The point evaluation map h_x ($h_x(F) = F(x)$) for $x \in T$, $F \in BV(T)$) is a complex homomorphism of BV(T). Let f_x be the semicharacter in BV(T) which corresponds to the homomorphism h_x ; in this manner, each $x \in T$ is identified with some $f_x \in \hat{S}$. We can now prove the following theorem.

THEOREM 5. Let T be an abelian idempotent semigroup with identity. Then there exists a compact topological semigroup S, an L-subalgebra M of M(S), and a semigroup isomorphism $x \rightarrow f_x$ of T into S such that:

- 1. Each complex homomorphism h of M has the form $h(\mu) = \int_{S} f d\mu$ = $\hat{\mu}(f)$ for some $f \in \hat{S}$.
- 2. If we consider $T \subset \hat{S}$ via the embedding $x \to f_x$, then the map $\mu \to \hat{\mu}|_T$ is an isomorphism and order preserving isometry of M onto BV(T).

The semigroup T can be embedded in the semigroup (under pointwise multiplication) \hat{S} as an idempotent subsemigroup which clearly separates points in BV(T). However, \hat{S} itself need not be idempotent. A modification of an example given in [2] provides a counterexample.

REFERENCES

- 1. R. B. Darst, A decomposition of finitely additive set functions, J. Reine Angew. Math. 210 (1962), 31-37.
- 2. S. E. Newman, Measure algebras on idempotent semigroups, Pacific J. Math. (to appear).
- 3. G.-C. Rota, On the foundations of combinatorial theory: I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw, Gebiete 2 (1964), 340-368.
- 4. J. L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc. 119 (1965), 150-166.

University of Missouri, St. Louis, Missouri 63121