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1. In earlier work [ l ] , [2], the generalized nonlinear functions 
which enter formally into certain nonlinear relativistic quantized 
partial differential equations in a two-dimensional space-time were 
given mathematical formulation and treatment. The theory of these 
highly singular functions, and in particular their locality, when com­
bined with hyperbolicity ideas implemented by the use of the 
Lie-Trotter formula, gave a means of adapting the treatment of 
quantum field dynamics in terms of a group of automorphisms of a 
C*-algebra, developed initially in [3], to the equations in question. 
The present work describes an extension of the theory of these basic 
functions (or "renormalized products of quantum fields")» to general 
space-times and laws of dependence of the energy on the momentum, 
relativistic theory in a Minkowski space of any dimension being a 
rather special case. The general dynamical implications of these 
results will be treated later. 

2. Since apart from the recent work [ l ] , [2], [4], [5], [ó] there is 
little mathematical literature on renormalized powers of quantum 
fields, it may be helpful to describe briefly the background of the 
subject. Renormalized products of quantum variables in general, 
and of quantum fields in particular, arose and were studied soon after 
the introduction of quantum mechanics. The ambiguities in the 
calculus of operators satisfying "canonical commutation relations" 
became more serious in the case of quantum fields, where they ap­
peared in part as "infinities" or so-called "divergences." The usage 
in the physical literature was standardized as a result of work of 
Wick [ô], whose mathematical core as now perceived is a theorem in 
finite-dimensional algebra (cf. Theorem 1.3 of [2]). Its extensive 
application in the physical literature has been to situations involving 
a continuum of variables (typically, the "values" of a generalized 
function on Rn) ; these are treated by formal analogy with the finite-
dimensional, purely algebraic, situation. 
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The germ of a different approach to the definition and treatment 
of renormalized products of quantum fields was noted in [7]. This 
approach, unlike that of Wick which was applicable only to "free 
fields," could be applied in principle to arbitrary fields such as the 
putative "interacting" field. I t was in the direction of an intrinsic 
characterization based on the elementary notions; 

(a) the formation of a renormalized product of generalized function 
should be a local operation on the functions; 

(b) the usual laws of algebra, such as the conclusion of the bi­
nominal theorem, should remain formally valid for the renormalized 
operations; 

(c) the only formal difference from the conventional product (in 
general, nonexistent in a mathematical sense) should be the vanishing 
of the expectation values of the renormalized products. 

The analytical viability of this approach was first established in 
[ l ] , [2] by connecting it with another approach to renormalization 
based on functional integration ideas and their application to the 
representation of quantum fields. In order for an evolutionary non­
linear partial differential equation to be well-defined, it has appeared 
essential that the nonlinear terms be defined for each fixed time; as a 
result, smoothing with respect to space is admissible in the nonlinear 
terms, but not smoothing with respect to time (or space-time) ; since, 
in quantum field theory, smoothing with respect to time is much more 
powerful than smoothing with respect to space, this is a serious limi­
tation. In two space-time dimensions, the fixed-time renormalized 
powers of a scalar field are representable by random variables on a 
probability space, and the simultaneous diagonalization of the re­
normalized powers of the field thereby obtained. In higher-dimen­
sional space-times, the fixed-time renormalized powers are now 
perceived to be generalized operators which typically map every 
vector in their domains outside of the Hilbert space in question. The 
functional integration approach is consequently not directly appli­
cable, and a different one is used in [3] to formulate and establish for 
rather general cases results which are formally identical to those for 
the two-dimensional case. On the other hand, these results, once 
established, have implications for the functional integration inter­
pretation, and lead for example to a natural and invariant definition 
for the (renormalized) powers of a "white noise" on an arbitrary 
abelian group. 

Mention may also be made of still another mathematical approach 
to renormalized products of free fields in [8]. This work, utilizing on 
an ad hoc basis a definition of renormalization due to Caienello, 
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established corresponding renormalized products in a scalar quantum 
field as operator-valued distributions on space-time. The operators 
in question were defined on a domain which is dense in the basic 
Hubert space, but otherwise sufficiently small as to avoid nontrivial 
involvement with infinite-degree-of-freedom considerations. In par­
ticular, it is not invariant under the complex exponentials of the 
fields which are relevant to a comprehensive analytical treatment, 
for reasons similar to those involved in the transition from the 
Heisenberg to the Weyl relations; indeed, a nonlinear variant of the 
Weyl relations applicable to the renormalized powers is used in the 
present work. 

3. Apart from the foregoing introduction and an appended section 
briefly correlating the present terminology and results with colloquial 
usage and heuristic theory, the presentation here will be strictly 
mathematical. This section treats notation and preliminary techni­
calities. 

If L is a given complex Hubert space, the corresponding normal 
symmetric quantum process 0(L) = (K, W, I \ v) consists of: 

(1) a complex Hilbert space K\ 
(2) a continuous mapping W from L to the unitary operators on 

K satisfying the Weyl relations: 

W(z)W(z') = exp[(*/2) Im«s, z'))]W(z + z'); 

(3) a continuous representation U—*T(U) of the group of all uni­
tary operators on H by similar operators on K, having the properties 
that 

(a) T(U)W(z)T(U)~l=W(Uz) for all U and 2; 
(b) dT(X)*z for any selfadjoint operator X in L such that 

X}>0, where dT(X) denotes the selfadjoint generator of the one-
parameter group T(eitx), t^R1; 

(4) a unit vector u £ K which is cyclic for the W(z) and such that 
T(U)v=v for all U. 
The foregoing properties determine Q(L) uniquely, within unitary 
equivalence. The selfadjoint generator of the one-parameter unitary 
group [W(tz):tE:Rl] will be denoted as V(z). 

For any operator T in a real or complex Hilbert space H\ D(T) 
will denote the domain; D^{T) will denote the common part of the 
domains of the Tn when n ranges over the positive integers; [D(7")] 
will denote the completion of D(T) as a Hilbert space relative to the 
inner product (x, y ) r = ( r ^ , Ty)\ and [ JD^JT) ] will denote D„(T) as 
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a topological linear space, a generic neighborhood of 0 consisting of 
all x such that || Tkx\\ < e for k <ko, for some e and ko. 

G will denote a given locally compact abelian group; B a given posi­
tive selfadjoint translation invariant operator in Li(G) ; C the restric­
tion of B112 to the real Hubert space H' consisting of the real elements 
of Z,2 (G) ; and H the complex Hubert space which as a real linear space 
is [ . 0 ( 0 ] © l-DCC"1)]; whose complex structure and fundamental 
sesquilinear form are given by the following equations, where z = x®y 
and z'=x'®yf are arbitrary in H: i: x@y—>—B~ly@Bx; (z, z') 
= <C*, C^ + iC-fy C-1y,)+i((x1 / > - < * ' , y)). The selfadjoint 
generator of the one-parameter unitary group U(t) in H defined by 
the equation: U(t)z = z', with x'= cos(tB)x + (sin(tB)/B)y, y' 
= —B sin(tB)x+cos{tB)y, will be denoted as A) and dT(A) will be 
denoted as H. ty(Cx) will be denoted as $(#), and ^{iC~lx) as 4>(x). 
The spectral function for B on G* will be denoted as B(-). 

4. The unicity of the renormalized products as characterized in 
Theorem 2 follows from a result applicable to an abstract space H'. 

THEOREM 1 [S]. Let A' be a given selfadjoint operator in a complex 
Hilbert space H' such that A'^ el for some €>0 . and let H' = dT(A'). 
Then the mapping (z, u)—>W(z)u is infinitely differentiable from 
[D00(-4,)]X [DOOCH7)] into [DO0(H

/)]; and any continuous sesquilinear 
form on [D^ÇS')] which is invariant under the W(z) for all zÇE.D{A') 
is proportional to the fundamental f or m on K. 

An analogous result for unitary representations of Lie groups has 
been established by N. S. Poulsen (Massachusetts Institute of Tech­
nology, Mathematics Department). 

For simplicity, only renormalized powers, rather than the similarly 
treated renormalized products involving suitably defined derivatives, 
are considered in 

THEOREM 2 [5]. If B(-)~l(~Lp(G*) for all sufficiently large p, then 
there exist for w = 0, 1, • • • , unique f unctions <£»(•) from G to the con­
tinuous sesquilinear forms on \D^{H)\ such that 

(i) themapping(a1u1u
,)-^<t>n(a)(u1u

/)iscontinuousfromGX [D^H)] 
X [DM(H) ] into C,for every n; 

(ii) <j>o(a)(u, u') = (u, u')for arbitrary u, u'E.D^H)^ $«(#)(*>, v)=0 
for arbitrary a G G and n > 0 ; 

(iii) For all a E G , realfE:Doo(B), and u and u' in D^H); and with 
x=f@Q; 4>n(a)(e*Mut e i* ( l )w /)=0»W(w, u')\ 0n(a)(e**<*>tt, «<*«*') 
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In this result the operator B plays two analytically distinct roles: 
one in connection with the definition of the regularity domains 
[Dco^)] and [D^(H)] ; the other in connection with the definition of 
the processes $ and 4>. A more general result involving two operators 
may here be represented by essentially the case in which B is replaced 
by I in the second connection; this provides an intrinsic characteriza­
tion of renormalized powers of the so-called "white noise," which is 
more singular than any relativistic quantum process. The relation 
between Theorems 2 and 3 may be clarified by the observation that 
the mapping x@y—>CxQiC~ly is unitary from H onto L2(G)t and 
transforms A into B. 

THEOREM 3 [6]. If L' = L2(G), if B is as in Theorem 2, and if K 
= dT(B), then there exist for w = 0, 1, • • • unique functions # n ( 0 from 
G to the continuous sesquilinear forms on [D^H)] such that 

(i) the map (a, u, uf)-*<t>n(a)(u, u') is continuous from GX [D*(H)] 
X[Dm(H)]; 

(ii) <t>o(a)(ut u') = (u, u')for all a(EG, <t>n(a)(u, u') = Q for all a(E.G 
andn>0; 

(iii) denoting the sesquilinear form: (u, u')-*<l>n(a)(W(z)u, W(z)ur) 
as Fn(a, z), the following relations hold for real x in D^B); 

Fj(a, x) = Ffa 0), Ffa ix) = £ ( f ) Fn-k(a, 0)x(a)k. 

The forms <£»(a) may alternatively be interpreted as generalized 
operators, from the space [D^(H)\ to its antidual; these operators in 
turn determine conventional operators on K, by restriction to those 
vectors whose transforms are again in K, where K is injected into the 
antidual in the canonical fashion. Generally speaking, these forms 
are quite well behaved modulo the circumstance that the correspond­
ing conventional operators typically have only 0 in their domains. A 
number of results in this connection may be illustrated by 

THEOREM 4 [5]. IfG = Rn, w > l , B(k) = (m^+k*)1'2,/Gii(i?n), and 
f<l>2(a)f(a)da maps (at least) one nonzero vector into K, then f =0. 

THEOREM S [5]. Iff is a real element of L\(G) and f<t>n(a)f(a)da maps 
a dense domain in K into K, then the corresponding conventional oper­
ator in K is essentially self adjoint. 

The strong regularizing effect of temporal smoothing is shown by 
the next result, which uses the notation #»(a, /) for F(t)<t>n(a)T(t)"1. 
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THEOREM 6 [6]. If B{-)ELP{G*) for all p>3, if gELi(G) 
and g£Li(G*), and ƒ is a real, even, element of L\{RX) such that f (k) 
= 0( |X|~ n ) , |X| —>oo, then f</)n{a, t)g{a)f{t)dadt maps all of D^H) into 
K, and has a self adjoint extension as an operator in K. 

This result is essentially to the effect that as a conventional oper­
ator, f(f>n{cLy t)g{a)da is a distribution in t of order n. On restricting the 
form of the spectral function, e.g., to the relativistic case, slightly 
sharper results are obtainable as to the order, a point which is signifi­
cant in connection with the integration of the associated partial 
differential equations (cf. [ó]). In the relativistic case, for example, 
when n = 2, ƒ may be a step function; for n — 3, ƒ may have the form: 
f(s) = l-\s\e~lfor \s\ <e,f{s)=0ior \s\ ^e. 

3. The following brief physico-mathematical lexicon may be of use 
to some readers, and ignored by those of purely mathematical inter­
ests. Normal symmetric quantum process is an objective correlative 
for the variable term free Bose-Einstein quantum field, which is how­
ever usually used in connection with a specific partial differential 
equation. K is the field state {vector) space; ^{z) is a, field operator (or 
variable); T{U) is the second-quantized operator corresponding to the 
singly-quantized operator U, occurring in most treatments only in 
infinitesimal form and with U restricted to be of the form U{a) for 
some representation £/(•) of the Poincaré group; v is the vacuum 
{state) vector. H is the space of normalizable solutions of the abstract 
wave equation •<£ = (), where [J = {d/dt)2—B2; A is the {singly-
quantized) energy operator; H is the {total) field energy operator. 
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