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This paper presents several results on global solutions of the initial 
value problems for the first order nonlinear conservation law 

(1) ut+ V-F(u) = 0 

and the associated second order nonlinear parabolic equation 

(2) ut + V-F(u) = vAu, v > 0 

for an unknown scalar function u = u(t,x) on the domain D = 
{(*, x)ERd+1; t>0}. Here FEC«(Rl, Rd). For both equations, the 
given initial data are 

(3) u(0, x) = UQ(X), x G Rd. 

We call these initial value problems IVPi and IVP2 respectively. 
They are of interest as simplified prototypes of the initial value prob
lems of gas dynamics (nonviscous and viscous respectively—cf. [2]). 

We deal with weak solutions of IVPi and IVP2. If uEl}fc(D), we 
say that u is a weak solution of IVPi if for each 0GC1(.Rd+1) of com
pact support 

(4) I I [u<t>t + F(u) • V4>]dxdt + i u0(x)<t>(0, x)dx = 0. 
R 

We say that u is a weak solution of IVPi if for each <j>(E.C2(Rd+l) of 
compact support 

(5) I I [u<t>t + vuA<f> + F(u) • V<j>]dxdt + I «o(*)0(O, x)dx = 0. 
Rd 

I t is well known [2] that weak solutions of IVPi are discontinuous 
and nonunique. For solutions of bounded variation locally in D, 
Vol'pert [3] has given a supplementary condition, called an entropy 
condition, on the discontinuities of a solution which singles out a 
unique solution in this class. We call this the entropy solution; it exists 
whenever u0 is bounded and has bounded variation locally in Rd [3]. 

1 Publication was partially supported by National Science Foundation Grant NSF-
GP 5990 at Stanford University. 
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We assume throughout that u0 is integrable on Rd and has bounded 
variation there. I t follows that \u0\ ^ M for some M. 

If u(t, x) is a weak solution of IVP2 which is locally essentially 
bounded and has as distribution gradient Vu(t, x) a bounded mea
sure on compact sets of D, we call it a regular solution of IVP2. 

THEOREM 1. If u(t, X) is a regular solution of IVT2, then w£C°°(Z)), 
equation (2) is satisfied in the classical sense in D, and the initial condi
tion (3) is satisfied in the sense tho,t, for each <t>Ç.C°(Rd+1) of compact 
support, 

/
u(t, x)<t>(t, x)dx—* I Uo(x)4>(0, x)d. 

d J d 
x as t —» 0. 

R R 

THEOREM 2. IVPi has at most one regular solution. 

We approach the questions of existence and properties of solutions 
of IVPi and IVP2 through a finite difference scheme used by Conway 
and Smoller [l ] to solve IVPi. Our methods are slightly stronger than 
those of [l ], and permit simultaneous consideration of IVPi and IVP2. 

Let h, q>0 be mesh lengths. Let G be the d-dimensional lattice 
G= {x^Rd; x = qa for a £ Z d } . We label points in G by their multi-
indices a. Let ô(i) be the multi-index with 1 in the ith. component and 
0 in all others. If u is a function on G, ua denotes its value at «GG. 
We consider maps k-+ua(k) from the nonnegative integers to func
tions on G. Then our finite difference scheme may be written 

fr-1 ["««(* + 1) - (2d)-1 £ («*"«>(*) + ««-*W(*))1 

+ Z (2j)-1[Fi(«*ww(*)) ~ Fi(«r*«>(k))] = 0 
t = l 

with initial data 

(7) «°(o) - «; 

where F{ is the ith component of F. I t is clear that ua(k) is uniquely 
determined through (6) by the initial data (7). 

We may identify the ua(k) (resp. u%) with functions U(t, x) (resp. 
UQ(X)) which are constant on "grid cells." I t is with this identifica
tion in mind that we speak of convergence of solutions of (6) (resp. 
convergence of the initial data (7)) as h, q—»0. 
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Let hj, qj—»0 define a sequence of grids Gy. If ||«o|| « ^ M, let A = max»-
supi^i^jif | i^fa)! » and assume that the stability condition Ad?£qj/hj 
holds for each Gy. It is possible to choose the initial data UJ

0(x) so as 
to converge in L\(Rd) to u0 with || î/o|U Sa M and the total variation of 
VU& bounded by that of Vu0. We assume below that such a choice 
has been made. 

THEOREM 3. (i) If q2
j/2dhj-j>i'>Q, then the finite difference solutions 

converge in Z,]i°c([0, T] XRd) for each fixed T>0 to a regular solution of 
IVP*. 

(ii) If çpj/ldhj—ïOt then there is a subsequence of G, such that the finite 
difference solutions converge in L1

1
oc( [0, T] XRd) for each fixed T>0 to a 

weak solution of IVP±. 

THEOREM 4. Let uv(t, x) be regular solutions of IVP2 (parameterized 
by v), and let u(t, x) be the entropy solution of IVP\. Then uv(t, x) 
-*u(t, x) in 4OC([0, T]XRd) as v-^Ofor each fixed T>0. 

Some of these results were obtained in the author's doctoral disser
tation at the Massachusetts Institute of Technology under the gui
dance of Professor James Glimm. 
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