ON THE EQUATIONS $u_t + \nabla \cdot F(u) + 0$ AND $u_t + \nabla \cdot F(u) = \nu \Delta u^1$

BY DANIEL B. KOTLOW

Communicated by Avner Friedman, June 6, 1969

This paper presents several results on global solutions of the initial value problems for the first order nonlinear conservation law

$$(1) u_t + \nabla \cdot F(u) = 0$$

and the associated second order nonlinear parabolic equation

(2)
$$u_t + \nabla \cdot F(u) = \nu \Delta u, \quad \nu > 0$$

for an unknown scalar function u = u(t, x) on the domain $D = \{(t, x) \in \mathbb{R}^{d+1}; t > 0\}$. Here $F \in C^{\infty}(\mathbb{R}^1, \mathbb{R}^d)$. For both equations, the given initial data are

$$u(0, x) = u_0(x), \quad x \in \mathbb{R}^d.$$

We call these initial value problems IVP_1 and IVP_2 respectively. They are of interest as simplified prototypes of the initial value problems of gas dynamics (nonviscous and viscous respectively—cf. [2]).

We deal with weak solutions of IVP₁ and IVP₂. If $u \in L_1^{loc}(D)$, we say that u is a *weak solution of IVP*₁ if for each $\phi \in C^1(\mathbb{R}^{d+1})$ of compact support

(4)
$$\int\!\!\!\int_{D} \left[u\phi_{t} + F(u) \cdot \nabla\phi \right] dx dt + \int_{R^{d}} u_{0}(x)\phi(0, x) dx = 0.$$

We say that u is a weak solution of IVP_2 if for each $\phi \in C^2(\mathbb{R}^{d+1})$ of compact support

(5)
$$\int\!\!\!\int_{D} \left[u\phi_t + \nu u\Delta\phi + F(u)\cdot\nabla\phi \right] dxdt + \int_{R^d} u_0(x)\phi(0, x)dx = 0.$$

It is well known [2] that weak solutions of IVP_1 are discontinuous and nonunique. For solutions of bounded variation locally in D, Vol'pert [3] has given a supplementary condition, called an *entropy condition*, on the discontinuities of a solution which singles out a unique solution in this class. We call this the *entropy solution*; it exists whenever u_0 is bounded and has bounded variation locally in R^d [3].

¹ Publication was partially supported by National Science Foundation Grant NSF-GP 5990 at Stanford University.

We assume throughout that u_0 is integrable on \mathbb{R}^d and has bounded variation there. It follows that $|u_0| \leq M$ for some M.

If u(t, x) is a weak solution of IVP₂ which is locally essentially bounded and has as distribution gradient $\nabla u(t, x)$ a bounded measure on compact sets of D, we call it a *regular solution* of IVP₂.

THEOREM 1. If u(t, x) is a regular solution of IVP_2 , then $u \in C^{\infty}(D)$, equation (2) is satisfied in the classical sense in D, and the initial condition (3) is satisfied in the sense that, for each $\phi \in C^0(\mathbb{R}^{d+1})$ of compact support,

$$\int_{\mathbb{R}^d} u(t, x)\phi(t, x)dx \to \int_{\mathbb{R}^d} u_0(x)\phi(0, x)dx \quad as \quad t \to 0.$$

THEOREM 2. IVP₂ has at most one regular solution.

We approach the questions of existence and properties of solutions of IVP_1 and IVP_2 through a finite difference scheme used by Conway and Smoller [1] to solve IVP_1 . Our methods are slightly stronger than those of [1], and permit simultaneous consideration of IVP_1 and IVP_2 .

Let h, q > 0 be mesh lengths. Let G be the d-dimensional lattice $G = \{x \in \mathbb{R}^d; x = q\alpha \text{ for } \alpha \in \mathbb{Z}^d\}$. We label points in G by their multiindices α . Let $\delta(i)$ be the multi-index with 1 in the *i*th component and 0 in all others. If u is a function on G, u^{α} denotes its value at $\alpha \in G$. We consider maps $k \rightarrow u^{\alpha}(k)$ from the nonnegative integers to functions on G. Then our finite difference scheme may be written

(6)
$$h^{-1} \left[u^{\alpha}(k+1) - (2d)^{-1} \sum_{i=1}^{d} \left(u^{\alpha+\delta(i)}(k) + u^{\alpha-\delta(i)}(k) \right) \right] + \sum_{i=1}^{d} \left(2q \right)^{-1} \left[F_i(u^{\alpha+\delta(i)}(k)) - F_i(u^{\alpha-\delta(i)}(k)) \right] = 0$$

with initial data

$$(7) u^{\alpha}(0) = u^{\alpha}_0$$

where F_i is the *i*th component of F. It is clear that $u^{\alpha}(k)$ is uniquely determined through (6) by the initial data (7).

We may identify the $u^{\alpha}(k)$ (resp. u_0^{α}) with functions U(t, x) (resp. $U_0(x)$) which are constant on "grid cells." It is with this identification in mind that we speak of convergence of solutions of (6) (resp. convergence of the initial data (7)) as $h, q \to 0$.

Let $h_j, q_j \rightarrow 0$ define a sequence of grids G_j . If $||u_0^j||_{\infty} \leq M$, let $A = \max_i \sup_{1 \leq j \leq M} |F'_i(v)|$, and assume that the stability condition $Ad \leq q_j/h_j$ holds for each G_j . It is possible to choose the initial data $U_0^j(x)$ so as to converge in $L_1(\mathbb{R}^d)$ to u_0 with $||U_0^j||_{\infty} \leq M$ and the total variation of ∇U_0^j bounded by that of ∇u_0 . We assume below that such a choice has been made.

THEOREM 3. (i) If $q_j^2/2dh_j \rightarrow \nu > 0$, then the finite difference solutions converge in $L_1^{\text{loc}}([0, T] \times \mathbb{R}^d)$ for each fixed T > 0 to a regular solution of IVP_2 .

(ii) If $q_j^2/2dh_j \rightarrow 0$, then there is a subsequence of G_j such that the finite difference solutions converge in $L_1^{\text{loc}}([0, T] \times \mathbb{R}^d)$ for each fixed T > 0 to a weak solution of IVP_1 .

THEOREM 4. Let $u_{\nu}(t, x)$ be regular solutions of IVP_2 (parameterized by ν), and let u(t, x) be the entropy solution of IVP_1 . Then $u_{\nu}(t, x)$ $\rightarrow u(t, x)$ in $L_1^{\text{loc}}([0, T] \times \mathbb{R}^d)$ as $\nu \rightarrow 0$ for each fixed T > 0.

Some of these results were obtained in the author's doctoral dissertation at the Massachusetts Institute of Technology under the guidance of Professor James Glimm.

References

1. E. Conway and J. Smoller, Global solutions of the Cauchy problem for quasilinear first order equations in several space variables, Comm. Pure Appl. Math. 19 (1966), 95–105.

2. O. A. Oleinik, Discontinuous solutions of nonlinear equations, Uspehi Mat. Nauk 12 (1957), 3-73.

3. A. I. Vol'pert, The space BV and quasilinear equations, Mat. Sb. 73 (1967), 255-302.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139 and

STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305

1364