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It has recently been shown independently, with simultaneous
announcements, by Fearnley [10] and Rogers [15] that the pseudo-
arc [1], [2], [12], [13] is the only nondegenerate homogeneous plane
continuum that is both circularly chainable and hereditarily inde-
composable. Thus the pseudo-circle, described by Bing [2, p. 48],
is not homogeneous. It is the purpose of this note to show that this
result by Fearnley and Rogers can be combined with various other
theorems to obtain a characterization of all nondegenerate homo-
geneous plane continua that are circularly chainable. It is interesting
that the class of all such continua consists of the three known examples
of nondegenerate homogeneous plane continua; namely, the simple
closed curve, the pseudo-arc, and the circle of pseudo-arcs [7].

Definitions of linearly chainable continua and of circularly chainable
continua can be found in [8]. In some of the references, continua of
the former type have been called chainable continua or snake-like con-
tinua, and those of the latter type have been called circle-like continua.
With the definitions used here, there exist nondegenerate continua
which are both linearly chainable and circularly chainable [8,
Theorem 7], but in some places in the literature this is not permit-
ted [5, p. 210]. A continuum M is defined to be homogeneous if for
each two points x and y of M there is a homeomorphism of M onto
itself that takes x onto ¥.

It is our intention to include enough references to indicate a com-
plete proof of the following theorem, even though some parts of the
proof may already be known to people who are familiar with the
references. A history of work on the problem of classifying homo-
geneous plane continua can be found in [7].

THEOREM. A nondegenerate circularly chainable plane continuum is
homogeneous if and only if it is either a simple closed curve, a pseudo-
arc, or a circle of pseudo-arcs.

PrOOF. A pseudo-arc has been characterized by Bing [2] as a lin-
early chainable continuum that is hereditarily indecomposable. Bing
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[1] and Moise [14] have shown that the pseudo-arc is homogeneous.
Also, it is circularly chainable [8, Theorem 7]. Bing and Jones [7]
described a circle of pseudo-arcs and proved that it is homogeneous.
Each such continuum is circularly chainable, by definition, and any
two of them are homeomorphic [7, p. 189]. Thus each of the three
types of plane continua mentioned in the theorem is both homogenous
and circularly chainable.

Let M be a nondegenerate plane continuum which is both homo-
geneous and circularly chainable. Two cases will be considered,
depending upon whether M is decomposable or indecomposable.

Case 1. M is decomposable. Jones [11, Theorem 2] has shown that
every homogeneous nondegenerate decomposable plane continuum
is a “circle of homogeneous tree-like continua.” Since M is circularly
chainable, each of these tree-like continua is linearly chainable and
hence must be either a point or a nondegenerate homogeneous con-
tinuum that is linearly chainable. Bing [4] has shown that every
continuum of the latter type is a pseudo-arc. Thus M is either a
simple closed curve or a circle of pseudo-arcs.

Case 2. M is indecomposable. It follows from [9, Theorem 11],
together with [6, Theorem 7], that M is hereditarily indecomposable.
If M were to separate the plane, it would be a pseudo-circle. Fearnley
[10] and Rogers [15] have shown that such a continuum cannot be
homogeneous. Thus M does not separate the plane and, consequently,
is tree-like [3, Theorem 6]. It follows from [8, Theorem 10] that M
is linearly chainable. Now since M is hereditarily indecomposable,
it must be a pseudo-arc [2, Theorem 1].
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