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1. Introduction. In this note we announce some results on existence
of PL embeddings of n-spheres and #»-balls into a compact (n—1)-
connected g-manifold (#=g—2) by extending techniques of our pre-
ceding papers [5], [4]. Details will appear later. The result for locally
flat embeddings with codimension two is satisfactory, although in
general the low dimensional cases are still open.

By U;., D§, Ui.; St we denote the disjoint unions of  copies of the
standard PL #»-ball D*, the standard PL #n-sphere S*»=34D"t+!, resp.
The embedding theorem of balls in codimension <2 is as follows:

THEOREM A. Let Q be a compact (n—1)-connected PL q-manifold
with nonempty boundary Q.
Let ¢: Ui, D;}—Q be a map such that ¢(Ui., S )CAQ and
&|Ui_, St~ is a PL embedding.
(I). Suppose that one of the following holds.
(0) g=n==3, 4,
(1) g=n+1#4,
2) g=n+254 and r=1.
Then ¢ is homotopic to a proper PL embedding f: Ui, Di—Q keeping
&|Usoy 77 fixed.
(I1). Suppose that ¢| Ui, Sz~ is locally flat, and that
1) g=n+1=40r
(2) g=n+2=o0dd and r=1.
Then ¢ is homotopic to a locally flat PL embedding f: Uy, D3—Q keep-
ing ¢|Us, Si~* fixed.
(Refer to [13, Chapter 8, Corollary 5].)

In case g—n =0, Theorem A, (I) is equivalent to the generalized
Poincaré conjecture. In case g=n-+1=4, Theorem A is still open. In
case n=2 and Q=D refer to [13, Chapter 8, Counterexample 1].

In case ¢g=n+2=even, Theorem A, (II) is false because of the
existence of nonslice knots ([1] and [6, Chapter III]).

The embedding theorem of spheres in codimension =2 is as follows:
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THEOREM B. Let Q be a compact (q—3)-connected PL g-manifold.
Suppose that g#4.

(I). If ¢=5, a basts of H,_1(Q; Z) can be represented by mutually
disjoint locally flat PL(q—1)-spheres. In particular, any element of
H, 1(Q; Z2) can be represented by a locally flat PL(q—1)-sphere.

(1). Any element of Hy 2(Q; Z) can be represented by a PL(g—2)-
sphere.

(III). Further, if q=o0dd, then any elements of H,2(Q; Z) can be
repflfesented by a locally flat PL(q—2)-spheres. (Refer to [2, Corollary
1.2])

Theorem B, (I) is best possible by the homology reason. In case
¢=4, Theorem B, (I) and (II) are still open.
Theorem B, (III) is best possible because of the following.

THEOREM C (WITH RONNIE LEE). For each even integer n =2, there
exists a compact PL(n+2)-manifold Q which is an abstract regular
neighborhood of S™ such that no nontrivial element of H,(Q; Z) can be
represented by a locally flat PL n-sphere. (Refer to [7].)

This is a modification of our preceding results [5, Theorem 2],
whose proof may be improved to obtain the above by making use of
Reidemeister torsions, which was pointed out to the author by
Ronnie Lee.

As an implication of Theorems A and B we have the codimension
<2 extension of Irwin's Theorem [2].

THEOREM D. Let M and Q be compact PL m- and g-manifolds. Let
¢: (M, dM)—(Q, 0Q) be a map such that qS| M is a PL embedding and
¢~1(0Q) =M.

Suppose that m =5, g—m =2 and

(1) M is (2m—q)-connected, and

(2) Qis 2m—q-+1)-connected.

Then ¢ is homotopic to a proper PL embedding f: M—Q keeping
9Q fixed.

We remark here that by the normal PL bundle theory for locally
flat PL embeddings [3], [11], [12] and the so-called Cairns-Hirsch
smoothing theory [8], the adjective “locally flat PL” in theorems can
be replaced by “smoothable,” if Q is smoothable.

2. The structure of compact (¢—3)-connected g-manifolds (¢=5).
In the following, all things are considered from the piecewise linear
viewpoint. Let Q be a compact (¢—3)-connected g-manifold with
nonempty boundary Q. Suppose that ¢=5. Then by Poincaré-
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Lefschetz duality and the universal coefficient theorem, H,_1(Q)
ng(Qr aQ)ng(Qv aQ)v Hq—2(Q)gH2(Qr aQ)%Hz(Q, aQ) are free
of ranks «, 8, where o, (8 are the Betti numbers of H, 1(Q), H,2(Q),
resp. Let x={x1, -+, %}, y={3 - - -, ¥s} be given bases of
Hq—l(Q), Hy2(Q) and let 2= {9731, R xa}! y= {5’1, T yﬂ} be
corresponding bases of H,(Q, dQ), Hi(Q, dQ) by the isomorphism
above. From the general position we can represent these bases %
and ¥y by properly embedded arcs and disks having trivial normal
bundles, since Q is 1-connected and H,(Q, 0Q)=2H;(3Q). Let C be the
complement of the union of open normal bundles of the disks and the
arcs in Q. Then we have a handle decomposition; Q=(@QXD)
+@)+ - - - +($a)+ @)+ - - - +@s)+C, where handles (¢1), (Fx)
are just the trivial normal bundles of the arcs, disks representing
%1, % and hence of indices 1, 2, resp. By looking at this decomposition
upside down, we have the dual decomposition;

Q=C+ W)+ -+ )+ (@) + -+ (90,

where (¢1), 1) are the duals to (@), (¥1) and of indices (¢—1), (¢—2),
resp. Then the handles (¢:), (¥1) represent juxi, jsxy: of Ho1(Q, O),
H,_»(Q, C), where jx: Hx(Q)—Hx(Q, C) is the natural homomorphism
from the reduced homology group H«(Q) to Hx(Q, C). Notice that
handles (¢:), (V1) are mutually disjoint. Therefore, H«(Q, C) is torsion
free and jx: He(Q)—Hx(Q, C) is an isomorphism and Hy(C)=0. On
the other hand by the general position C is 1-connected. Thus Cis a
compact contractible g-manifold.
Now we have proved the following

THEOREM 2.1. Let Q be a compact (q— 3)-connected g-manifold. Let
o, (3 be the Betti numbers of Hy1(Q), H—2(Q). Suppose that ¢=5. Given
bases x, vy of H,1(Q), Hy—2(Q), then we have a handle decomposition of
Q relative to a compact contractible g-manifold C;

Q=C+ @)+ -+ W)+ (¢) + - - -+ (¢a)

such that handles (¢i), Y1) are mutually disjoint, of indices ¢—1, g—2
and represent the bases jxx, jsy, resp.

REMARK. For an (#—1)-submanifold M of 3Q, if g=n-+1and =0
or if g=n-2, then by the general position we may take the handle
decomposition so that M CaC.

3. Embeddings of balls and spheres into a contractible manifold
and a homology sphere. In codimension two case, the proof of Theo-
rems A and B is based on the following special case of Theorem A
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which is an extension of results on knot cobordisms due to Kervaire
[6] and Levine [9].

THEOREM 3.1. Let C be a compact contractible g-manifold and let
¢: Ul S2'—0C be a locally flat embedding. Let Q be a manifold
obtained from C by attaching r handles of index n via a framing of
¢|Ui ST

Suppose that g=n+2=2m~+1. Then ¢| Sy~ *: S*~1—2Q extends to a
locally flat embedding f: such that f(D") meets the right-hand ball with
algebraic intersection number 1.

Suppose that g=n+2=2m~+2=6. Then f can be taken to be locally
flas.

In codimension one case, it is based on the following

LemMA 3.2. Suppose that ¢=5.

(1) Let C and C' be compact contractible g-manifolds with homeo-
morphic boundaries dC and dC'. Then a homeomorphism h: dC—IC’
extends to a homeomorphism H: C—C'.

(2) A homology (q—1)-sphere M bounds a contractible g-manifold.

This may be well known and implies the following

THEOREM 3.4. Let C be a compact contractible g-manifold and let
¢: Uiy Si~'—0C be an embedding. Suppose that

g=n+1=3.
Then ¢ extends to a proper embedding f: Ui, D;—C.

Finally, the proof of Theorem A may be reduced to the locally
flat case in virtue of the following

LeEMMA 3.5. Let M be a homology m-sphere, and let f: S*—M be an
embedding. Suppose that (m, n) £ (4, 2). Then f is isotopic to a locally
flat embedding (perhaps by a locally knotted isotopy) keeping the comple-
ment of a given regular neighborhood of f(S*) in M fixed.

Thisis a generalization of Fox-Milnor-Noguchi’s Theorem [1], [10].

4. Applications: Some results on compact (¢—3)-connected
g-manifolds. An implication of Theorem 2.1 is the following generali-
zation of [4, Theorem 3.11] and [5, Theorem 5].

THEOREM 4.1. Let Q be a compact (q— 3)-connected g-manifold with
nonempty boundary and let «, B be the Betti numbers of H, 1(Q),
H,(Q). Suppose that ¢=5.
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(1) Then the boundary dQ of Q has the homology of a manifold ob-
tained from some copies of S and B copies of S2X S by taking a+1
connected sums.

(2) Conversely, if a closed (q—1)-manifold M has the homology of
the manifold above, then M bounds a compact (g— 3)-connected g-mani-
fold Q so that a, B are the Betti numbers of H, 1(Q) and H, 5(Q).

(3) Moreover, if (Q, Q) is oriented, then there are at most 203 distinct
orientation preserving homeomorphism classes of oriented compact
(g—3)-connected g-manifold (Q’, Q") whose boundaries dQ’ are homeo-
morphic to Q preserving orientations.

(4) In particular, if B=0, then an orientation preserving homeo-
morphism h:0Q—Q' extends to an orientation preserving homeomor-
phism H: Q—Q'.

Let Q be a compact ¢g-manifold homotopy equivalent to S*. We
define an invariant w(Q) €Z; as follows: w(Q) =0, if Q admits a locally
flat embedding f: S*—Q which is a homotopy equivalence, and
w(Q) =1, otherwise. Note that w(Q) =0 if and only if a basis of H,(Q)
can be represented by a locally flat #-sphere. In the situation above
we have

THEOREM 4.2. (I). The following statements are equivalent:
(1) w(Q)=0.
(2) Q can be embedded in S
(3) Any embedding f: Sr—Int Q is isofopic to a locally flat em-
bedding keeping the complement of a given regular neighborhood of f(S™)
in Q fixed.
(I1). In particular, if w(Q)=0, then QXD is homeomorphic to
S*X D=+ and the double of Q is homeomorphic to S*X S1—n.

The statements (I), (III) of Theorem B imply that w(Q) =0, pro-
vided g=n+1=5 or g=n-+2=0dd.

COROLLARY 4.3. Let Q be a compact g-manifold homotopy equivalent
to S*. Suppose that ¢= 5 and either g=n+1 or g=n-+2=o0dd. Then all
the statements of Theorem 4.2 hold.

In case ¢ =4, we have some weaker statements: Let Q be a compact
4-manifold. Suppose that Q collapses a 2-subpolyhedron L homeo-
morphic to the wedge Vi., Si. We define an invariant I(Q) in Z, as
follows: I(Q) =0, if each 2-sphere of L has the self-intersection num-
ber a multiple of 2 and I(Q) =1, otherwise. Then we have

THEOREM 4.4. (I). The following statements are equivalent:

(1) 1(@Q)=0.
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(2) QXD is homeomorphic to a boundary commected sum of «
copies of S*X D3,

(3) The double of Q is homeomorphic to a connected sum of «
copies of S?X.S2

(I1). The following statements are equivalent:

(1) I1(Q)=1.

(2) QXD is homeomorphic to a boundary connected sum of oo—1
copies of S2X D? and the nontrivial D? bundle over S2.

(3) The double of Q is homeomorphic to a connected sum of (—1)
copies of S?X.S? and the nontrivial S* bundle over S
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