EMBEDDING SPHERES AND BALLS IN CODIMENSION ≤2

BY MITSUYOSHI KATO1

Communicated by William Browder, April 28, 1969

1. Introduction. In this note we announce some results on existence of PL embeddings of n-spheres and n-balls into a compact (n-1)-connected q-manifold $(n \ge q-2)$ by extending techniques of our preceding papers [5], [4]. Details will appear later. The result for locally flat embeddings with codimension two is satisfactory, although in general the low dimensional cases are still open.

By $\bigcup_{k=1}^{r} D_{k}^{n}$, $\bigcup_{k=1}^{r} S_{k}^{n}$ we denote the disjoint unions of r copies of the standard PL n-ball D^{n} , the standard PL n-sphere $S^{n} = \partial D^{n+1}$, resp. The embedding theorem of balls in codimension ≤ 2 is as follows:

THEOREM A. Let Q be a compact (n-1)-connected PL q-manifold with nonempty boundary ∂Q .

Let $\phi: \bigcup_{k=1}^{n} D_{k}^{n} \to Q$ be a map such that $\phi(\bigcup_{k=1}^{n} S_{k}^{n-1}) \subset \partial Q$ and $\phi[\bigcup_{k=1}^{n} S_{k}^{n-1} \text{ is a PL embedding.}]$

- (I). Suppose that one of the following holds.
 - (0) $q = n \neq 3, 4,$
 - (1) $q = n + 1 \neq 4$,
 - (2) $q=n+2 \neq 4$ and r=1.

Then ϕ is homotopic to a proper PL embedding $f: \bigcup_{k=1}^r D_k^n \to Q$ keeping $\phi | \bigcup_{k=1}^r S_k^{n-1}$ fixed.

- (II). Suppose that $\phi \mid \bigcup_{k=1}^{r} S_k^{n-1}$ is locally flat, and that
 - (1) $q = n + 1 \neq 4$ or
 - (2) $q = n + 2 = odd \ and \ r = 1$.

Then ϕ is homotopic to a locally flat PL embedding $f: \bigcup_{k=1}^r D_k^n \to Q$ keeping $\phi | \bigcup_{k=1}^r S_k^{n-1}$ fixed.

(Refer to [13, Chapter 8, Corollary 5].)

In case q-n=0, Theorem A, (I) is equivalent to the generalized Poincaré conjecture. In case q=n+1=4, Theorem A is still open. In case n=2 and $Q=D^4$, refer to [13, Chapter 8, Counterexample 1].

In case q=n+2= even, Theorem A, (II) is false because of the existence of nonslice knots ([1] and [6, Chapter III]).

The embedding theorem of spheres in codimension ≤ 2 is as follows:

¹ Work supported in part by Sakkokai Foundation and National Science Foundation grant GP-7952X.

THEOREM B. Let Q be a compact (q-3)-connected PL q-manifold. Suppose that $q \neq 4$.

- (I). If $q \ge 5$, a basis of $H_{q-1}(Q; Z)$ can be represented by mutually disjoint locally flat PL(q-1)-spheres. In particular, any element of $H_{q-1}(Q; Z_2)$ can be represented by a locally flat PL(q-1)-sphere.
- (II). Any element of $H_{q-2}(Q; Z)$ can be represented by a PL(q-2)-sphere.
- (III). Further, if q = odd, then any elements of $H_{q-2}(Q; Z)$ can be represented by a locally flat PL(q-2)-spheres. (Refer to [2, Corollary 1.2].)

Theorem B, (I) is best possible by the homology reason. In case q=4, Theorem B, (I) and (II) are still open.

Theorem B, (III) is best possible because of the following.

THEOREM C (WITH RONNIE LEE). For each even integer $n \ge 2$, there exists a compact PL(n+2)-manifold Q which is an abstract regular neighborhood of S^n such that no nontrivial element of $H_n(Q; Z)$ can be represented by a locally flat PL n-sphere. (Refer to [7].)

This is a modification of our preceding results [5, Theorem 2], whose proof may be improved to obtain the above by making use of Reidemeister torsions, which was pointed out to the author by Ronnie Lee.

As an implication of Theorems A and B we have the codimension ≤ 2 extension of Irwin's Theorem [2].

THEOREM D. Let M and Q be compact PL m- and q-manifolds. Let $\phi: (M, \partial M) \rightarrow (Q, \partial Q)$ be a map such that $\phi \mid \partial M$ is a PL embedding and $\phi^{-1}(\partial Q) = M$.

Suppose that $m \ge 5$, $q-m \le 2$ and

- (1) M is (2m-q)-connected, and
- (2) Q is (2m-q+1)-connected.

Then ϕ is homotopic to a proper PL embedding $f: M \rightarrow Q$ keeping ∂Q fixed.

We remark here that by the normal PL bundle theory for locally flat PL embeddings [3], [11], [12] and the so-called Cairns-Hirsch smoothing theory [8], the adjective "locally flat PL" in theorems can be replaced by "smoothable," if Q is smoothable.

2. The structure of compact (q-3)-connected q-manifolds $(q \ge 5)$. In the following, all things are considered from the piecewise linear viewpoint. Let Q be a compact (q-3)-connected q-manifold with nonempty boundary ∂Q . Suppose that $q \ge 5$. Then by Poincaré-

Lefschetz duality and the universal coefficient theorem, $H_{q-1}(Q) \cong H^1(Q, \partial Q) \cong H_1(Q, \partial Q)$, $H_{q-2}(Q) \cong H^2(Q, \partial Q) \cong H_2(Q, \partial Q)$ are free of ranks α , β , where α , β are the Betti numbers of $H_{q-1}(Q)$, $H_{q-2}(Q)$, resp. Let $x = \{x_1, \dots, x_{\alpha}\}$, $y = \{y_1, \dots, y_{\beta}\}$ be given bases of $H_{q-1}(Q)$, $H_{q-2}(Q)$ and let $\bar{x} = \{\bar{x}_1, \dots, \bar{x}_{\alpha}\}$, $\bar{y} = \{\bar{y}_1, \dots, \bar{y}_{\beta}\}$ be corresponding bases of $H_1(Q, \partial Q)$, $H_2(Q, \partial Q)$ by the isomorphism above. From the general position we can represent these bases \bar{x} and \bar{y} by properly embedded arcs and disks having trivial normal bundles, since Q is 1-connected and $H_2(Q, \partial Q) \cong H_1(\partial Q)$. Let C be the complement of the union of open normal bundles of the disks and the arcs in Q. Then we have a handle decomposition; $Q = (\partial Q \times D) + (\bar{\phi}_1) + \dots + (\bar{\phi}_{\alpha}) + (\bar{\psi}_1) + \dots + (\bar{\psi}_{\beta}) + C$, where handles $(\bar{\phi}_l)$, $(\bar{\psi}_k)$ are just the trivial normal bundles of the arcs, disks representing \bar{x}_l , \bar{y}_k and hence of indices 1, 2, resp. By looking at this decomposition upside down, we have the dual decomposition;

$$O = C + (\psi_1) + \cdots + (\psi_{\theta}) + (\phi_1) + \cdots + (\phi_{\theta}),$$

where (ϕ_k) , (ψ_l) are the duals to $(\bar{\phi}_k)$, $(\bar{\psi}_l)$ and of indices (q-1), (q-2), resp. Then the handles (ϕ_k) , (ψ_l) represent j_*x_k , j_*y_l of $H_{q-1}(Q, C)$, $H_{q-2}(Q, C)$, where $j_*: \tilde{H}_*(Q) \to H_*(Q, C)$ is the natural homomorphism from the reduced homology group $\tilde{H}_*(Q)$ to $H_*(Q, C)$. Notice that handles (ϕ_k) , (ψ_l) are mutually disjoint. Therefore, $H_*(Q, C)$ is torsion free and $j_*: \tilde{H}_*(Q) \to H_*(Q, C)$ is an isomorphism and $\tilde{H}_*(C) = 0$. On the other hand by the general position C is 1-connected. Thus C is a compact contractible q-manifold.

Now we have proved the following

THEOREM 2.1. Let Q be a compact (q-3)-connected q-manifold. Let α , β be the Betti numbers of $H_{q-1}(Q)$, $H_{q-2}(Q)$. Suppose that $q \ge 5$. Given bases x, y of $H_{q-1}(Q)$, $H_{q-2}(Q)$, then we have a handle decomposition of Q relative to a compact contractible q-manifold C;

$$Q = C + (\psi_1) + \cdots + (\psi_{\beta}) + (\phi_1) + \cdots + (\phi_{\alpha})$$

such that handles (ϕ_k) , (ψ_l) are mutually disjoint, of indices q-1, q-2 and represent the bases j_*x , j_*y , resp.

REMARK. For an (n-1)-submanifold M of ∂Q , if q=n+1 and $\beta=0$ or if q=n+2, then by the general position we may take the handle decomposition so that $M \subset \partial C$.

3. Embeddings of balls and spheres into a contractible manifold and a homology sphere. In codimension two case, the proof of Theorems A and B is based on the following special case of Theorem A

which is an extension of results on knot cobordisms due to Kervaire [6] and Levine [9].

THEOREM 3.1. Let C be a compact contractible q-manifold and let $\phi: \bigcup_{r=0}^k S_k^{n-1} \rightarrow \partial C$ be a locally flat embedding. Let Q be a manifold obtained from C by attaching r handles of index n via a framing of $\phi | \bigcup_{k=1}^r S_k^{n-1}$.

Suppose that q = n + 2 = 2m + 1. Then $\phi \mid S_0^{n-1} : S^{n-1} \rightarrow 2Q$ extends to a locally flat embedding f: such that $f(D^n)$ meets the right-hand ball with algebraic intersection number 1.

Suppose that $q = n+2 = 2m+2 \ge 6$. Then f can be taken to be locally flat.

In codimension one case, it is based on the following

LEMMA 3.2. Suppose that $q \ge 5$.

- (1) Let C and C' be compact contractible q-manifolds with homeomorphic boundaries ∂C and $\partial C'$. Then a homeomorphism $h: \partial C \rightarrow \partial C'$ extends to a homeomorphism $H: C \rightarrow C'$.
 - (2) A homology (q-1)-sphere M bounds a contractible q-manifold.

This may be well known and implies the following

Theorem 3.4. Let C be a compact contractible q-manifold and let $\phi: \bigcup_{k=1}^{n} S_k^{n-1} \longrightarrow \partial C$ be an embedding. Suppose that

$$q=n+1\geq 5.$$

Then ϕ extends to a proper embedding $f: \bigcup_{k=1}^{r} D_{k}^{n} \rightarrow C$.

Finally, the proof of Theorem A may be reduced to the locally flat case in virtue of the following

LEMMA 3.5. Let M be a homology m-sphere, and let $f: S^n \rightarrow M$ be an embedding. Suppose that $(m, n) \neq (4, 2)$. Then f is isotopic to a locally flat embedding (perhaps by a locally knotted isotopy) keeping the complement of a given regular neighborhood of $f(S^n)$ in M fixed.

This is a generalization of Fox-Milnor-Noguchi's Theorem [1], [10].

4. Applications: Some results on compact (q-3)-connected q-manifolds. An implication of Theorem 2.1 is the following generalization of [4, Theorem 3.11] and [5, Theorem 5].

THEOREM 4.1. Let Q be a compact (q-3)-connected q-manifold with nonempty boundary and let α , β be the Betti numbers of $H_{q-1}(Q)$, $H_{q-2}(Q)$. Suppose that $q \ge 5$.

- (1) Then the boundary ∂Q of Q has the homology of a manifold obtained from some copies of S^{q-1} and β copies of $S^{q-2} \times S^1$ by taking $\alpha+1$ connected sums.
- (2) Conversely, if a closed (q-1)-manifold M has the homology of the manifold above, then M bounds a compact (q-3)-connected q-manifold Q so that α , β are the Betti numbers of $H_{q-1}(Q)$ and $H_{q-2}(Q)$.
- (3) Moreover, if $(Q, \partial Q)$ is oriented, then there are at most 2β distinct orientation preserving homeomorphism classes of oriented compact (q-3)-connected q-manifold $(Q', \partial Q')$ whose boundaries $\partial Q'$ are homeomorphic to ∂Q preserving orientations.
- (4) In particular, if $\beta = 0$, then an orientation preserving homeomorphism $h: \partial Q \rightarrow Q'$ extends to an orientation preserving homeomorphism $H: Q \rightarrow Q'$.

Let Q be a compact q-manifold homotopy equivalent to S^n . We define an invariant $\omega(Q) \subset Z_2$ as follows: $\omega(Q) = 0$, if Q admits a locally flat embedding $f: S^n \to Q$ which is a homotopy equivalence, and $\omega(Q) = 1$, otherwise. Note that $\omega(Q) = 0$ if and only if a basis of $H_n(Q)$ can be represented by a locally flat n-sphere. In the situation above we have

THEOREM 4.2. (I). The following statements are equivalent:

- (1) $\omega(Q) = 0$.
- (2) Q can be embedded in S^q .
- (3) Any embedding $f: S^n \rightarrow \text{Int } Q$ is isotopic to a locally flat embedding keeping the complement of a given regular neighborhood of $f(S^n)$ in Q fixed.
- (II). In particular, if $\omega(Q) = 0$, then $Q \times D$ is homeomorphic to $S^n \times D^{q-n+1}$ and the double of Q is homeomorphic to $S^n \times S^{q-n}$.

The statements (I), (III) of Theorem B imply that $\omega(Q) = 0$, provided $q = n+1 \ge 5$ or q = n+2 = odd.

COROLLARY 4.3. Let Q be a compact q-manifold homotopy equivalent to S^n . Suppose that $q \ge 5$ and either q = n+1 or q = n+2 = odd. Then all the statements of Theorem 4.2 hold.

In case q=4, we have some weaker statements: Let Q be a compact 4-manifold. Suppose that Q collapses a 2-subpolyhedron L homeomorphic to the wedge $\bigvee_{k=1}^{\alpha} S_k^2$. We define an invariant I(Q) in Z_2 as follows: I(Q)=0, if each 2-sphere of L has the self-intersection number a multiple of 2 and I(Q)=1, otherwise. Then we have

THEOREM 4.4. (I). The following statements are equivalent:

(1) I(Q) = 0.

- (2) $Q \times D$ is homeomorphic to a boundary connected sum of α copies of $S^2 \times D^3$.
- (3) The double of Q is homeomorphic to a connected sum of α copies of $S^2 \times S^2$.
 - (II). The following statements are equivalent:
 - (1) I(Q) = 1.
- (2) $Q \times D$ is homeomorphic to a boundary connected sum of $\alpha 1$ copies of $S^2 \times D^3$ and the nontrivial D^3 bundle over S^2 .
- (3) The double of Q is homeomorphic to a connected sum of $(\alpha-1)$ copies of $S^2 \times S^2$ and the nontrivial S^2 bundle over S^2 .

REFERENCES

- 1. R. H. Fox and J. W. Milnor, Singularities of 2-spheres in 4-space and cobordism of knots, Osaka J. Math. 3 (1966), 257-267.
- 2. M. C. Irwin, Embeddings of polyhedral manifold, Ann. of Math. (2) 82 (1965), 1-14.
 - 3. M. Kato, Combinatorial prebundles. Part II, Osaka J. Math. 4 (1967), 305-311.
- 4. ——, Higher dimensional PL knots and knot manifolds, J. Math. Soc. Japan (to appear).
 - 5. , On compact (n+2)-manifolds homotopy equivalent to S^n (unpublished).
- M. Kervaire, Les noeuds de dimensions superieurs, Bull. Soc. Math. France 93 (1965), 225-271.
- 7. M. Kervaire and J. W. Milnor, On 2-spheres in 4-manifolds, Proc. Nat. Acad. Sci. U. S. A. 47 (1961), 1651-1657.
- 8. R. K. Lashof and M. Rothenberg, *Microbundles and smoothings*, Topology 3 (1965), 357-388.
- **9.** J. Levine, *Knot cobordism groups in codimension two*, Comment. Math. Helv. (to appear).
- 10. H. Noguchi, Obstructions to locally flat embeddings of combinatorial manifolds, Topology 5 (1966), 203–213.
- C. P. Rourke and J. Sanderson, *Block bundles*. I, Ann. of Math. (2) 87 (1968),
 1–28.
- 12. C. T. C. Wall, Locally flat submanifolds with codimension two, Proc. Cambridge Philos. Soc. 63 (1967), 5-8.
- 13. E. C. Zeeman, Seminars on combinatorial topology (mimeographed notes) Inst. Hautes Études Sci., Paris, 1963-1966.

Tokyo Metropolitan University, Tokyo, Japan and Institute for Advanced Study, Princeton, New Jersey 08540