CHARACTERIZATIONS OF LINEAR GROUPS
BY MICHIO SUZUKI!

Introduction. In his address at the International Congress of
Mathematicians at Amsterdam, 1954, Brauer [3] proposed a program
of studying simple groups, particularly various linear groups, by
giving the structure of the centralizers of elements of order 2. He
proved among other things that if a simple group G contains an ele-
ment j of order 2 such that the centralizer C¢(f) is isomorphic to the
centralizer of an element of order 2 in a group L which is either the
simple group L,(q) or L;(gq) (with some restriction on ¢), then G is in
fact isomorphic to L, except for a few isolated exceptional cases.
Thus he gave a characterization of the groups Ls(g) or L;3(q) in terms
of the structure of the centralizer of an element of order 2. The work
of Brauer was followed by a large number of investigations along
the same direction. This paper is a further study in this direction of
characterizing linear groups by the structure of the centralizers of
involutions. Its purpose is to characterize the simple groups L.(g)
when ¢ is a power of 2. We shall also give a survey of known results.

1. General remarks and a survey of the known results. The prob-
lems we are interested in have an intimate bearing on the funda-
mental problem of classifying the finite simple groups. By a theorem
of Feit-Thompson [10], a nonabelian simple group is of even order.
Hence the centralizers of elements of order 2 are the subgroups of a
simple group, which are always present and hopefully can be ex-
ploited.

Although almost no general proposition concerning the relation-
ship between the structure of a simple group and the structures of
the centralizers of elements of order 2 is known at present, there is
some indication that the situation will be improved in the near future.

We shall consider more specific situations. One formulation of the
problem will be as follows: Let G be a simple group such that the
centralizers of elements of order 2 satisfy a group theoretical property
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P. Prove that G is a simple group belonging to a particular family F
of simple groups. There are several works concerning this problem.
We refer to [35], where the problem has been solved for

P = nilpotency or 2-closedness.

Gorenstein [15] solved the problem when P is the property of having
a normal 2-complement. A particular case was given by Glauberman
[14]. In each case the particular family F of simple groups has been
explicitly given.

There are many challenging variations of the problem. The case
when P is the solvability is one of the unsolved cases. According to
the result of [35], 2-closedness is the property of the centralizers of
elements of order 2, which almost characterizes the family of the
linear groups of low rank over fields of characteristic 2. It would be
an interesting problem to investigate what property P would charac-
terize, with some exceptions, a larger family of simple groups; for
example, the family of linear groups over fields of characteristic 2.
If we use a weaker assumption that G contains a single element of
order 2 whose centralizer satisfies the property P, the problem be-
comes harder to solve. Even the case when P is the nilpotency has
not been solved yet. We add a remark that, over a field of charac-
teristic 2, the symplectic group of four variables contains a central
involution whose centralizer is nilpotent.

A still more specific situation is when the structure of the cen-
tralizer is, more or less, explicitly given. Let us assume that G is a
simple group and that j is an element of order 2 of G. Set H= C¢q(j).
A fundamental result here is the following theorem of Brauer and
Fowler [6]. There is a function f such that

|G| =7 H])

where |G| denotes the order of G. Thus, if the order of H is given,
there can be only a finite number of isomorphism classes of simple
groups G, which contain an element j of order 2 and H= C¢4(j). Gen-
eral form of the function f is very crude and gives an estimate of the
order of G too large to be of practical value. The problem here is to
determine the structure of G when the structure of H is given. In
many cases we select a known simple group K and choose an element
t of order 2 in K. Assume that H=Cxk(¢). The expected answer is that
G is isomorphic to K. In all the cases worked out so far, the elements
¢t and j are assumed to be central; that is, to lie in the center of a
Sylow 2-group of K and G, respectively. Sometimes two or more non-
isomorphic simple groups have isomorphic centralizers of central
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involutions. If 4, denotes the alternating group of degree #, the cen-
tralizers of central involutions of Asn and Asmy1 are isomorphic. A
recent discovery of two new simple groups, the Hall-Janko group of
order 604,800 and the Higman-Janko-McKay group of order
50,232,960 provides another case. Besides, the following pair of
simple groups has isomorphic centralizers: (Ls(7), 4s) and (L3(3),
My). Just 2 triplets (412, A3, Se(2)) and (Ls(2), Ma, H;) of simple
groups with isomorphic centralizers are known, and no example
seems to be known when four or more simple groups have isomorphic
centralizers. In the above, H; is the simple group of order 21033527317,
whose possibility was announced by Held [20] and whose existence
was worked out by G. Higman and verified by McKay with aid of a
computer.

If the structure of H = C¢(j) is assumed to be different from the one
which appears in the known simple groups, we may obtain a con-
tradiction. But there are some fascinating exceptional cases, which
have led to the discoveries of some new sporadic simple groups (Janko
[22], [24]).

The list of simple groups characterized by the structure of cen-
tralizers may be found at the end of this section.

In many cases, every member of a family of simple groups is char-
acterized. Let L,(¢) denote the projective special linear group of
dimension n over a field of characteristic 2. Thus ¢ is a power of
2:g¢=2m™ Let ¢ be an element of order 2 of L,(g) which is represented
by a transvection. Denote by H(n, q) the centralizer of ¢ in L,(g). In
this paper the following theorem is proved.

THEOREM 1. Let G be a simple group which contains a subgroup H
such that

(i) H=H(n, q) for some n, ¢=2, and

(ii) if z is a nonidentity element of the center of H, then Cq(z) =H.

Then G is isomorphic to L.(q) except in the following cases: g=2
and n<5.

The cases n<4 have been treated ([8] =2, [32, II] n=3, [32,
1V] n=4). Held [20] considered the case #=5 and ¢g=2. So in this
paper we assume either ¢>2 or #=6. The exceptions are as follows:
G may be isomorphic to the following groups; 4¢ if n=3, 44 if n=4,
My or Hy if n=3.

Nonsimple groups which satisfy the conditions of Theorem 1 can
be classified.

THEOREM 2. If a nonsimple group G contains a subgroup H which
satisfies the two conditions of Theorem 1, then one of the following holds:
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(i) The center of H is a normal subgroup of G;

(i1) ¢=2 and H has a normal complement which is an abelian group
of odd order;

(iii) G possesses a series of normal subgroups

1€6:1E6GE6

such that Gy is an elementary abelian subgroup of order ¢*~1, G3/G is
a cyclic group of order dividing q—1 and G/G. is isomorphic to the pro-
jective general linear group PGL(n—1, q). Furthermore, we have

[G, G2] € G:.

This second theorem will be proved in (4.1) and (5.4) of this paper,
while the proof of Theorem 1 is completed at the end of the paper.

The proof of theorems like our Theorem 1 always begins by a con-
sideration of possible fusions of elements of order 2. The structure of
a Sylow 2-group of G and the assumed simplicity will restrict the pos-
sibilities. In this process “transfer theorems” of various types and the
Z*-theorem of Glauberman [13 ] are useful. We consider the structure
of the centralizer of each element of order 2, if some of them are not
given as a part of assumptions. If the fusion and the structure of cen-
tralizers of elements of order 2 are determined, the order of G will be
computed in most cases. Usually a complete discussion of possible
fusion and possible structure of the centralizers is difficult, but some-
times a partial knowledge will be sufficient. In this respect, charac-
ter theory may provide useful informations.

Our proof of Theorem 1 is along the line of argument discussed
above, but like corresponding proof in [32, IV] we tried to avoid the
discussion of fusion and structure of centralizers, other than given,
as much as possible. At the end the identification of G with L,(q) is
done by constructing a (B, N)-pair in G and using a characterization
of L,(g) as a group with a particular (B, N)-pair. For the importance
and required results concerning (B, N)-pairs, we refer to the works
of Tits [40], [41].

The structure theorems of (TI)-groups play important roles in
several places of the proof. A group is called a (TI)-group if two dis-
tinct Sylow 2-groups have only the identity element in common
(see [34]). Our proof is group theoretical, and the character theory
is never used explicitly.

The following list is almost self-explanatory. For example, the
second line means that the family of simple groups Ls(g) for odd g has
been characterized by Brauer [3], [¢], and when ¢=3, the Mathieu
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group My has the same centralizer as L;3(3), and it is the unique ex-
ception. We use Artin’s notation [1] to denote the classical simple
groups.

Group Reference Exceptions
Ls(q) Brauer-Suzuki-Wall [8] q=2,17,9
Ls(g) g:odd Brauer [3], [4] My when ¢=3
g: even Suzuki [32] Ae when g=2
Lig) g=-—1(4) Phan [30]
g: even Suzuki [32] Ay when ¢=2
Ls(2) Held [20] My, H,
Ui(g) ¢=1(12) Brauer-Suzuki [7]
g: even Suzuki [32] q=2
Ulg) q=-—1(4) Phan [31]
g: even Suzuki [32]
Us(g) q:even Thomas [38]
Si«(g) gq:odd Wong [44] (Janko [23], ¢=3)
g: even Suzuki [32] g=2
Se(g) g¢:odd Wong [45]
Se(2) Yamaki [47] Aps, A1z
Ex(g) g¢:odd Fong-Wong [11], [44]
2D«(q) g:even Thomas [36], [37]
My Brauer [3] Lg(3)
M. Brauer-Fong [5]
My, Mz Janko [25]
My Held [20] Ly(5), Hx
As, Ay, Ay Held [18], [19] (Wong [43] for 4s)
A 1 Kondo [27 ]
sz, A 18, A 14, A 15 Yamaki [46 ] SQ(Z)
An Kondo [28]
J1 Janko [22]
T2, Js Janko [24]

Higman-Sims group Janko-Wong [26]

2. Notation and necessary lemmas. In the rest of this paper we
shall consider only the linear group defined over a finite field of char-
acteristic 2. Let F be the field of ¢ elements where ¢ =2™is a power of
2. We identify the elements of the general linear group GL (%, ¢) with
the & Xk nonsingular matrices whose entries are taken from F. Thus
an element x of GL(%, ¢) is written as

x = (%) 2 EF 4,7=1,---,k

If this element is written, for example, as
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|
|
r=|———]———],
|
|
|

itis tacitly assumed that this is a block decomposition of the matrix x,
the letters X, Y, Z are submatrices of appropriate size and the blank
space represents the zero matrix. If the letter I with or without suffix
is used in place of X (¥ or Z), this explicitly means that X is the
identity matrix and the suffix indicates the size of X. The size of
submatrices is allowed to be zero. If this happens, for example if the
size of Z is zero, the corresponding row and column, (¥, Z) in the
example, are to be deleted. A submatrix of size 1 X1 may be identified
with an element of F. So if, for example, the block Z of the above
matrix is of size 1 X1, we may use the corresponding field element 2z
to denote Z. Conversely, any field element used in the expression of x
represents a block 6f size (1, 1).

(2.1) An element of order 2 of GL(Z, q) is conjugate to an element

I
(2.2) = 1 1=1sk2).
I, I
REMARK. A caution about our notation. The lower left corner is
the /X! identity matrix. By our convention the top and bottom I on
the main diagonal are I;. But the middle I may be of different size.

It is in fact of size £ —2/. If 2=2l, the middle row and column are to
be deleted; so it is
G2
7 .

The letter j; denotes always the matrix defined by (2.2) in some
GL(k, ¢). Since finite fields are perfect, an element of order 2 is con-
jugate to its canonical form j; in the special linear group SL(%, ¢).

(2.3) The centralizer of j; in SL(%, ¢) is the totality of matrices
of the form

b
(2.4) P Y (det X)2 det ¥ = 1,
0 R X
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where X is an /X! nonsingular matrix and det X is the determinant
of X. The mapping which sends the matrix (2.4) to the pair (X, Y) of
the direct product of GL(J, ¢) XGL(k—2/, ¢) is a homomorphism.
The image of this homomorphism contains SL(J, ¢) XSL(k—2I, q)
and covers both factors GL(/, ¢) and GL(k—2/, ¢) if 2> 2l. The kernel
is the maximal normal 2-subgroup of the centralizer.

In the following we always assume that #=5. By definition L,(g)
is the factor group of SL(%, ¢) by its center. The center of SL(#, ¢) is
a cyclic group of order d=(n, ¢g—1) consisting of scalar matrices,
where (n, ¢—1) is the greatest common divisor of # and ¢—1. Itisin
particular a group of odd order.

Let z be the element of order 2 of L,(g) which is represented by j;
(cf. (2.2)).

(2.5) Let H denote the centralizer of z in L,(¢). Then H is iso-
morphic to the factor group of the group of the matrices (2.4) by the
center of SL(#, ¢). If O denotes the maximal normal 2-group of H, the
factor group H/O is isomorphic to GL(n—2, q)/C where C is the set
of scalar matrices NI,_, with A»=1.

By (2.5), a Sylow 2-group of H is isomorphic to the group of lower
triangular matrices with 1 on the main diagonal. Let .S denote the
totality of such matrices

d.','~'=1 i=1,'--,n,
2.6) (a:) {

a; =0 1 <j.

We identify S as a Sylow 2-group of H.

(2.7) Ng(S) is a semidirect product of S and D,_2/C where D,_,
is the totality of nonsingular diagonal matrices of degree n—2 and
C is the subgroup defined in (2.5). If dED,_; is the element with
M1, * * -, Ma—z ON the main diagonal in that order, the conjugation by
d induces an automorphism of S which sends

. -1
(ai) into (mi—imj—10+)

where po=pn_1 and popt1 + * * pp1=1.

We remark that if the pair (s, j) is fixed, then p;iu,_, will be an
arbitrary nonzero element of F for a suitable choice of u1, - - -, pn—2,
unless the pair (4, j) is (#, 1) in which case p;_ju;_; =1 for any choice.

Some subgroups of .S are important in the following discussion. We
denote by (2.6) a generic element of S. We define the following sub-
groups of S:
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O: the maximal normal 2-group of H; the totality of elements
of S with relations a;;=0for all 7, jsuch that 2<j<is<n—1;
(2.8) P: the subgroup of O with further restrictions a,;=0 for all
2=sj<n;
R: the subgroup of O with a; =0 for all 7 such that 1<i<n;
T: the subgroup of S consisting of all the matrices (2.6) with
a21=0an n1=0.

Furthermore set
(2.9) Z =PNR, U=TP and V = TR.

The structure of the group H can be studied by matrix computa-
tion. By (2.5), an element % of H is a coset of the center of SL(#, ¢).

Suppose that % is represented by the matrix (2.4). The automorphism
of O induced by the conjugation by % sends an element

1 1
A I into |4’ I
B C 1 B C 1

where
(210) A’ = Y '4X, B = B+ CPX-'+ RY'4 and C' = X~ICY.

(2.11) (i) The group Z is the center of H.
(ii) Both P and R are self-centralizing abelian normal subgroup of H.
(iii) The center Z(T) of T is a subgroup of order ¢* comsisting of
matrices
1 )

Q I
where Q is an arbitrary 2 X2 matrix, and
Z(T) = Cu(T).

(iv) Let u be an involution of Z(T). If u€O, then Cs(u)=1T. If
ucO0—LZ, then Cs(u) is a subgroup of index g of S. For all u€Z(T),
Cs(u) is a Sylow 2-group of Cu(u).

(v) There are precisely 3 conjugate classes of involutions of H, which
contain elements of O—Z. Each class contains an element of Z(T).

(vi) S is the unique Sylow 2-group of H which contains T.

Proor. The assertions (i), (ii) and (v) follow easily from (2.10), and
(iii) is proved by simple computation. Any Sylow 2-group of H con-
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tains O by definition of 0. Hence a Sylow 2-group which contains T
must contain T and O. Since S=7T0, (vi) is proved. The assertion
(iv) follows by computation and (vi).

(2.12) (i) Let A be an elementary abelian subgroup of S which is
normalized by T. Suppose that A contains a matrix (a:;) with an 0.
Then for any element (x;;) of A, x:;=0 for j=2 and j<1 except the 2 X2
submatrix in the lower left corner, where

(xn-l 2 Xpo1 3) ()\x31 )\xn)
Xn 2 Xn 3 MX31  MX21
for some \ and pu.

(ii) Let A be an abelian subgroup of S which is normalized by T. If A
is not contained in T, | A| Sg~".

(iii) T s generated by all the abelian normal sugbroups of S of order
at least ¢g*»=2,

Proor. First we prove that an element of 4 is uniquely deter-
mined by the first column. Suppose by way of contradiction that there
are two distinct elements x and y with the same first column. Let ¢
be the smallest integer such that x and y have different 7th row. We
write

1 1
A B A B
x = and y =

cC X 1 cC Y 1

where (C, X, 1, 0) is the sth row. We have
1
1 I c 4
—1p =
) X—7 1

Since X — Y0 and T normalizes 4, there is an element # of 4 such
that

u = . with U = (1,0, - - -, 0).
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By assumption 4 contains an element a = (a;;) with ay 0. The (4, 1)
place of the commutator [a, ] has an entry ay 0. This contradicts
the commutativity of 4.

The elements of A are determined by its first column. So an ele-
ment x of 4 is written as

v= (}1( U(X)>

where U(X) is a lower triangular matrix determined uniquely by the
column vector X. Commutativity of 4 yields

(2.13) X+ UX)Y =Y+ U)X

for two column vectors X and V. If

"=(1 V)

is an element of T, we have

1
vxy! = ( )
VX vU&X)V-Y.
Since T normalizes A4, this yields
(2.14) UVX) =vUuXxX)v—

for any admissible V for which the element v belongs to T'. In particu-
lar U(X) commutes with any admissible V such that VX =X. Let
X be the column vector such that the top entry of X, is « and the
rest are zero. Then there is an element x, of 4 with X =X, and (2.14)
yields that entries of U(X.) below the main diagonal are zero except
the 2X2 submatrix of the lower left corner. Since the group 4 is
elementary, the first column of U(X.) consists of zeros except the top.
Thus all columns of U(X,)—I are zero except the second, where the
bottom two entries may be nonzero. Let V, denote the last two
entries of the second column of U(X.) (considered as a two-dimen-
sional column vector). If ¥ is any column vector with the top entry
zero, (2.14) yields that all columns of U(Y)—1I are zero except the
first, which we denote Y;. The equation (2.13) yields that

- (3)



1969] CHARACTERIZATIONS OF LINEAR GROUPS 1053

where $ is the second entry from the top of Y. This shows that ¥,
is a function of B only. Furthermore for some constant vector W,
Va=aW and the nonzero entries of ¥, are at bottom where we have
BW. Since an arbitrary element of 4 may be written as a product of
the form x,y where the column vector Y corresponding to ¥ has
zero at the top, the assertion (i) is proved.

The proposition (ii) follows from the first half of the above argu-
ment.

The totality of matrices of the form

(x o

forms an abelian normal subgroup of S. If X is of size (%, 1), this
abelian group is of order ¢*%. Since k+I=mn, kl =2(n—2) unless either
k=1 or I=1. Thus T is generated by abelian normal subgroups of
order at least ¢2(*?. Since 2(n—2) >n—1 for n=4, any abelian nor-
mal subgroup of S of order at least equal to ¢2*? is contained in T
by (ii). This proves (iii).

(2.15) A conjugate class of imvolutions of H—OQO is represented by
one of the following elements:

1

I
(216) |z 1
I

I I

ProOF. An element of H is represented by a matrix of the form
(2.4) where YEGL(n—2, g). Let J be a conjugate class of involutions
of H—O. Then J contains an element j which is represented by (2.4)
with Y =j; of (2.2). By simple computation we see that j is conjugate
to one of the elements in (2.16). The index & is equal to / in the first
case, I4+1 for the next two cases and /-2 for the last.

(2.17) Let j be one of the canonical forms in (2.16). The following

hold:
i) Ca(G)NS is a Sylow 2-group of Cu(j);
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(ii) If j is the first element of (2.16), then the center of Cs(j) contains
Z(T). We have

| zCsG) | =¢° ifkz2,
=¢* ifk=1;

(iii) If j is the second or third element of (2.16), the order of Z(Cs(j))
is g% If j is the last element, | Z(Cs(j))| = q*

This is proved by easy computation.
We need lemmas of general nature.

(2.18) Let u and v be two involutions in a torsion group G. If u s
not conjugate to v in G, there exists an involution w of G which com-
mutes with both u and v. Furthermore either uw is conjugate to u and
vw 15 conjugate to v, or uw s conjugate to v and vw to u.

This is known. By assumption the element #v has even order 2.
Set w= (uv)". If n is even, uw is conjugate to # because

uw = (vu)™vuv(uv)™ forn = 2m + 2.

Similarly vw is conjugate to v. If # is odd, »w is conjugate to v and
vw to u.

(2.19) Let G be a finite group of even order and S be a Sylow 2-group
of G. Set

D=NENS?

where the intersection is taken over all those conjugate subgroups S* of
S which satisfy SIN\S*#1. Suppose that there is a Sylow 2-group S, of
G such that SN\So=1. If S contains more than one involution, then
either D=S or D=1.

The following proposition is an immediate consequence of (2.19).

(2.20) Let G be a finite group of even order and S a Sylow 2-group.
Suppose that S contains more than one involution and that there is a
Sylow 2-group So of G such that SNSo=1. Suppose furthermore that
there is a subgroup T of S which satisfies the following two properties:

(1) T+#1and

(2) for any conjugate subgroup S of S, SIMNS*#1 implies that SO T.
Then G is a (TI)-group: that is, if S*#.S, then S*TNS=1.

Assume the validity of (2.19). Let D be the subgroup defined in
(2.19). The assumption of (2.20) implies that DD T 1. Hence by
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(2.19), D=S. This means that SN\S?5£1 implies S=5% So G is a
(T'I)-group.

For the properties of (T'I)-groups, see [34]. We remark here that
if a Sylow 2-group of a (T'I)-group G is not normal and contains more
than one involution then G contains a normal subgroup of odd index,
which is isomorphic to one of the simple groups Ls(g), S.(¢g) or Us(q)
for some ¢, a power of 2.

Proor of (2.19). The subgroup D defined in (2.19) is uniquely
determined by S. So we denote it as D=D(S). If x&G, then D(5%)
=D(S)=. If D=1, there is nothing to prove. Thus we assume that
Ds£1. We prove a series of lemmas.

(a) Let S, be a Sylow 2-group of G. If SMS1#1, then D(S1) =D(S).

Proor. Since SiN\S=1, SINS2DD =D(S); in particular S; 2D D. Let
S? be a Sylow 2-group such that SNS*#1. By defintion S*N\SDD.
Hence SiM\S*2D which is not 1 by assumption. By definition of
D(S;) we conclude that SzDD(S). Since D(S) is the intersection of
all those Sylow 2-groups S which satisfy SNS*=1, D(S)DD(S;). So
D(S) =D(S:) because they have the same order.

(b) Involutions of G are conjugate to each other.

ProOF. By assumption G contains a Sylow subgroup Sy such that
SNSy=1. By way of contradiction suppose that there is a pair of
involutions of G which are not conjugate. Then there is a pair of
involutions # and v such that ¥ €S, v&.S, and v is not conjugate to «.
By (2.18) there is an involution % which commutes with both % and
v. The subgroup (w, #) is of order 4. There is a Sylow 2-group S; of
G which contains (w, #). Similarly there is a Sylow 2-group S; of G
which contains (w, v). We have SNS;#1 because SNS;Du>#1.
Similarly $iN\S:1 and S:N\Se#1. By (a) we have D(S)=D(S)
=D(S;) =D(So). This contradicts the assumption D(S) 1 because
D(S,) =D(S) is contained in SNSy=1.

(c) D=D(S) contains all the involutions of S.

Proor. There is an involution j of D since D1. Let » be an
involution of S. By (b), there is an element x of G such that u=j=.
Thus SNS* contains # in common. By (a) we have D =D(S) =D(S?)
=D(S)*. Hence x normalizes D and # =j*€D.

(d) Ng(D) is strongly embedded (see [16], [33]).

ProoF. The group S is clearly contained in N¢(D). Hence any
involution of Ng(D) is conjugate in N¢(D) to an involution of S. By
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(c), D contains all the involutions of S. Hence D contains all the
involutions of N¢(D). Let j be an involution of Ng(D). If xE Ce(7),
SN\S= contains j =j*. Hence

D = D(S) = D(S®) = D(S)* = D=

Thus Ng(D)2Ce(j) for any involution j of Ng(D). N¢(D) contains
N¢(S), but Ng(D) does not contain involutions of D(S,). Thus N¢(D)
satisfies all the conditions of a strongly embedded subgroup.

We apply a theorem of Bender [2]. Since G contains a strongly
embedded subgroup and S contains more than one involution, G is a
(TI)-group by Bender’s theorem. Hence D=S and the proof is
finished.

3. Structure of Ng(7T) and fusion of involutions. Let H be the
centralizer of an involution in the center of a Sylow 2-group of
L,(g). The structure of H was discussed in (2.5). In the rest of this
paper we consider a finite group G which contains a subgroup iso-
morphic to H. We will identify this subgroup with H, so HCG. The
basic assumptions are

(1) G contains H with n=5,

(2) if 2z s an involution of Z(H), then Ce(z) =H.

We use the same notation as in the preceeding section. So S is a
Sylow 2-group of H and the notations (2.8) and (2.9) are used freely.
In particular Z=2Z(H).

3.1) () If ZNZ=#1, then Z =Z>.
(ii) Let X be a subgroup of G such that Ce(X)CX. If Z(X)N\Z=#1,
then Z*C Z(X).

Proor. The first proposition is a particular case of (ii) where
X =H. In order to prove (ii), choose a nonidentity element z of
Z(X)NMZ=*. Then Cgq(z) contains X. By the basic assumption (2),
C¢(2) = C¢(Z#). This implies that [X, Z=] =1. Hence Z*C C¢(X). By
assumption Ce¢(X)Z X, so

2> C XN Ce(X) = Z(X).

(3.2) () Ce(T)=2Z(T).
(ii) Let W be any subgroup such that TCWCS. Then

Ne¢(W) S Ne(T).

(iii) If S is any Sylow 2-group of G which contains T, Sy normalizes
T: $iCSN(T).
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(iv) If Siis a Sylow 2-group of Ne(T), the index | S: SN\Sy| is 1,
q or g%

ProoF. (i) Since ZC T, Ce(T) is contained in Cq(Z)=H. Thus
Ce(T)=Cx(T)=2Z(T) by (2.11) (iii).

(ii) Letx be an element of N ¢(W). By (2.12) (iii) T is generated by
the abelian normal subgroups of S of order at least ¢?(*=2. Let 4 be
an abelian normal subgroup of S of order at least ¢**2. Then
ACTCW. Hence 4° is an abelian group of order larger than g1,
which is normalized by 7. By (2.12) (ii), A*CT. This implies that x
normalizes T. Thus Ng(W)CE N¢e(T).

(iii) Set D =S1NN¢g(T) and assume, by way of contradiction, that
D#S;:. By Sylow’s theorem, D is contained in a Sylow 2-group S,
of Ng(T) and S;=.S for some element x of Ng(T). Then

TCD =N(T)NS;CS; =S.
By (ii), Ne(D*) S Ne(T). Hence
D°C Ne(DYNSi S Ne(T) N\ S} = D",

This implies that D? coincides with its normalizer in S}. This contra-
dicts a fundamental property of a p-group.

(iv) Since TS .Sy, Z(S1) =Z, centralizes T. By (i), Z1CZ(T). Let S,
be a Sylow 2-group of C¢(Z;) which contains Cg(Z;). Then both S;
and S; are Sylow 2-groups of C¢(Z;) which contain 7. By (2.11) (vi),
S;=3S;. This implies that SNS;=Cs(Z;). If Z; contains an element
of Z(T)—0, Cs(Z))=T (2.11) (iv). If Z:C0 and if Z; contains an
element u of O —Z, then Cgs(u) is of index ¢ in S. But the assumption
(2) yields that Cg(u) = Cs(Z,). This proves (iv).

(3.3) Both U and V are normal subgroups of Na(S).

ProOF. Let x be any element of N¢(S). Then x normalizes Z =Z(S),
H=C¢(Z) and finally O, because O is a characteristic subgroup of H.
There are precisely 3 conjugate classes of involutions in O—Z by
(2.11) (v). The sets P—Z and R—Z are two of them and each con-
tains ¢g»'—g elements. The third class contains (¢g"~!'—g)(¢g"2—q)
elements. The conjugation by x induces a permutation of the conju-
gate classes of H containing involutions of O—Z. If we denote this
permutation as f(x), f is a representation of N ¢(S) and the kernel of
f contains S. Thus the image of f is a group of odd order. Since the
third class contains more elements than the other two classes, f must
be trivial. Hence any element of N ¢(S) normalizes both P and R. By
(3.2) (ii) Ne(S)SNe(T). Hence U=TP is a normal subgroup of
N g(S). Similarly V is normal.
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(3.4) The element t=75 of (2.2) in S is not conjugate to any element
of ZinG.

Proor. Suppose that ¢ is conjugate to an element of Z in G. Since
t is an element of Z(T)MNO, the centralizer W= Cs(t) is a subgroup
of index ¢. Since ¢ is conjugate to an element of Z, there is a Sylow
2-group 51 of Cg(¢) which contains W. .S; is a Sylow 2-group of G.
By (3.2), SN\S;=W. Suppose ¢>2. We apply the Proposition (4.5)
of [32, IV] to Ne(T)/T. All assumptions of (4.5) of [32, IV] are
satisfied by (3.2) (iv) and (3.3). If ¢>2, (4.5) of [32,1V] and (3.2) (iv)
yield that SNS;= U or V. This is not the case.

If g=2, we use a different argument. Since W is maximal, .S and
S; are conjugate in Ng(W). The center of S; is generated by ¢, so
! is conjugate to the unique involution z of N¢(W). We determine the
upper central series of W. W is the subgroup of S consisting of the
matrices (a;;) with an=a, .1 (and a;;=1, ai;=0 for 1<j). So Z(W)
= (g, t), and the second center Z,(W) coincides with Z(T). Let Z,(W)
be the kth term in the upper central series of W. Then for £=3,
Z,(W) is the subset of S consisting of all (a;;) with a;;=0 for 0<i—j
<n—k. Let I be the smallest integer such that Z;(W) is not of ex-
ponent 2. Thus !=(n/2)+1 if n is even, and /= (n+1)/2 otherwise.
The equation X?=2z has more solutions in Z;(W) than the equation
X2=t. Hence ¢ is not conjugate to z in Ng(W). This contradicts the
assumption.

(3.5) Suppose that an element of Z is conjugate in G to an element
of P—Z and that an element of Z is conjugate to an element of R—Z
in G also. Then Ng(T)/T contains a normal subgroup of odd index
which is a direct product of two groups isomorphic to La(q).

Proor. By assumption there is an element u of P—Z which is
conjugate to an element of Z. Since P —Z is a conjugate class of H,
we may assume that # belongs to Z(7). Then Cs(u) = U. So there is
a Sylow 2-group S; of G such that SNS;= U. Similarly there is a
Sylow 2-group S, of G such that SNS;="7V.

Suppose that ¢g=2. Then Z is of order 2. Hence N¢(S)C H. By
(2.7), Nu(S) =S, so we conclude N¢g(S) =S. Therefore, Ng(T)/T has
an abelian Sylow 2-group which coincides with its normalizer. By a
theorem of Burnside N¢(T)/T has a normal 2-complement. Let Q
be the normal subgroup of index 4 such that SNQ=7T. Then Q/T
is the normal 2-complement of N¢(T)/T. If S, is any Sylow 2-group
of Ne(T), Z(S1)SZ(T) by (3.2) (i). If 2 is any element of Z(T) con-
jugate to 3, C¢(21)/\Ng(T) is contained in a unique Sylow 2-group
of G by (2.11) (vi). Thus N¢(T) contains at most 15 Sylow 2-groups.
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This yields | Q/T| <15. On the other hand Ng(U) acts transitively
on Z(U)—1. Hence U/T commutes with precisely 3 elements of
Q/T. Similarly V/T commutes with 3 elements of Q/T. The Sylow
group S/T does not centralize any nonidentity element of Q/T.
Hence |Q/T| is divisible by 9 (the fixed point formula of Brauer
[42]). Hence |Q/T| =9, and Q/T must be elementary abelian. It is
easy to check that Ng(T)/T is a direct product of two groups iso-
morphic to Ls(2).

We assume that ¢>2. All the assumptions of Proposition (4.6) of
[32, IV] are satisfied for N(T)/T by (3.2) (iv), (3.3) and the assump-
tions. Hence by (4.6) of [32, IV] Ng(T)/T contains a normal sub-
group L of odd index such that L=L; XL, and both L, and L, are
isomorphic to L,(g).

(3.6) Under the same assumptions as (3.5), Z(T) contains a con-
jugate subgroup Z* of Z such that Z*MNO=1.

Proor. By (3.5), there is a Sylow 2-group S: of Ne(7T) such that
SNS,=T. Set Z,=Z(S:). Since Z, centralizes T, Z;CZ(T). If
ZNO0#1, there is an element z; of Z; such that Cs(z;) is of index ¢
in S. There is a Sylow 2-group S: of C¢(z1) which contains Cg(z;).
Clearly S:##S; and SiN\S: contains T'. This is against (2.11) (vi).
Thus Z\N\0=1.

Let X be any subset of H, and let z be an involution of Z. We say
that z fuses in X if z is conjugate to an element, #3z, of X in G.

We prove the following propositions.

(3.7) If z does not fuse in Z(T)—O0, then z does not fuse in H—O.
(3.8) If z does not fuse in Z(T)—Z, then z does not fuse in H—Z.

Proposition (3.8) is an easy consequence of (3.7). Suppose that
(3.7) holds. If z does not fuse in Z(T)—Z, then z does not fuse in
H~—0 by (3.7). But involutions of O—Z are distributed into three
conjugate classes of H by (2.11, v), each of which has a representa-
tive in Z(T'). Hence z does not fuse in O —Z either. This proves (3.8).

In proving (3.7) let us assume, by way of contradiction, z fuses in
H—0. A set of representatives from the conjugate classes of H con-
taining involutions of H— O is given in (2.16). If z is conjugate to the
first element in (2.16), we say that a fusion of the first kind has oc-
curred. Any other fusion of z in H is called of the second kind. We
prove a series of lemmas under the assumption that z does not fuse
in Z(T)—0.

(a) No fusion of the first kind occurs.
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ProOF. Assume that 2 is fused to the first element of (2.16), which
we denote by u. Since £ Z(T') by assumption, we have £=2. Set

Zy=2Z(Ce¢(w)) and Q = Z(Cs(w)).

Then Z; is a conjugate subgroup of Z. By (2.17) (i), Cs(u) is a Sylow
2-group of Cq(2, #). Since Z, is contained in Cgq(2, %), we have Z;ZQ.

By (2.17) (ii), Q is a subgroup of order ¢°* which contains Z(T).
Since Z; is not contained in Z(T"), we have Z(T)NZ,=1 by (3.1) (ii).
Let A be a subgroup of Z(T') consisting of matrices whose lower left

corner is
a @
,B8,8 € F.
(0 a) «50E

An easy computation shows that any element of the coset Au is
conjugate to % in S.

Consider the fusion in Cg(%#). The element % fuses to z. Since the
center of a Sylow 2-group of Cg¢(%, 2) has order ¢5, this fusion is of
the first kind. Hence Q contains Z(T;) for some conjugate subgroup
T, of T. Moreover Z(T}) contains Z;. Since | Z(T1)| =¢*and | 4] =¢?,
we have |Z(T1)ﬂA| =¢? The element # is contained in Z(T}), so
Z(T,) contains at least g2 elements of the coset Au. Therefore Z(T4)
contains at least ¢? elements which are conjugate to z. The same
holds for Z(T). By assumption no conjugate element of z lies in
Z(T)—0. Any element of O which is conjugate to 2 is contained in
either P or R by (3.4). Since PNZ(T) contains at most ¢2—1 con-
jugate elements of 2, z fuses in both P—Z and R—Z. By (3.6), =
fuses in Z(T)—0. This contradiction proves (a).

(b) Elements of Z—1 are conjugate to each other.

Proor. By assumption z fuses to an element z of H—0. By (a)
we may assume that « is one of the last three elements of (2.16). Set
Zy=2(Cq(u)) and Q=2Z(Cgs(u)) as before. Then Z;ZQ and ZNZ(T)
=1. A simple computation proves that elements of Q—Z(T) are
conjugate to each other in Nx(S). This proves that elements of Z;—1
are conjugate to 2. The assertion (b) follows.

(c) If an element z of Z is conjugate to an element u of H—(2), then
2 is conjugate to the product zu.

Proor. If uEZ, (c) follows from (b). If &0 —Z, then u belongs
to either P or R. Then the product zu also belongs to P—Z or R—Z
and is conjugate to z. If #€H—0, we may assume that « is one of
the last three elements of (2.16). In all cases zu is conjugate to  in .S.
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We can finish the proof of (3.7) as follows. Let ¢ be the element
represented by j» of (2.2). Then by (3.4), ¢ is not conjugate to z in
G. By assumption z is conjugate to one of the last three elements of
(2.16), which is denoted by %. Then k in (2.16) is larger than 1 for
the second or third element, and is larger than 2 in the last case.
Thus the element # commutes with ¢ and is conjugate to uf in S.
Lemma (c) applied to « yields that « is conjugate to u(ut) =¢. This
is not the case.

4. Nonsimple cases. It is convenient to call an involution central
if it is conjugate in G to an involution of Z.

(4.1) If Z(T)—Z contains no central involution, then either Z is a
normal subgroup of G, or g=2 and H has a normal complement which
1s an abelian group of odd order.

Proor. By (3.8) there is no central involution in H—Z. Suppose
that ¢=2. Then the involution z of Z does not fuse in S. By a theorem
of Glauberman [13], G is not simple. In fact, if N is the largest nor-
mal subgroup of odd order of G, the coset Nz lies in the center of
G/N. By Sylow’s theorem, G= NH. Since H contains no normal sub-
group of odd order >1, we have NNH =1. Thus N is a normal com-
plement of H. N is abelian because z acts fixed point free.

Assume that ¢>2, and we prove a series of lemmas.

(a) Let x be an element of Z(T)—O. Then T is a Sylow 2-group of
C a(x).

Proor. Choose a Sylow 2-group T; of Ce(x) which contains T,
and then choose a Sylow 2-group S; of G which contains T3. Since
TC Sy, Z(S)) centralizes T and hence is contained in Z(T'). By assump-
tion Z(S;) =Z. Then S; contains 0. This S=T0OCS;. Since Cs(x) =T,

T1 Q Ca(x) NS = C,g(x) = T.

This proves that T is a Sylow 2-group of Ce(x).

(b) Let x be an element of Z(T)—O0. Then any 2-element of Cg(x)
belongs to H.

ProoF. Suppose false. Then there are Sylow 2-groups of Cg(x)
which are not contained in H. Choose a Sylow 2-group Q of Cg(x)
such that Q is not contained in H and with this restriction | QNH |
is maximal. Set =QNH. By definition I contains the element x.
Let S; be a Sylow 2-group of G which contains Q. By definition .5; is
not contained in H.
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First we prove that ZMNI=1. Suppose that ZNI#1. Then ZNI
contains a central involution z. By assumption all central involutions
of S; are contained in Z(S;). Hence we have S1C Cg(z) = H, which is
not the case.

Set J=ICq(I). We prove that J/I is a (TI)-group. Since Z cen-
tralizes I, there is a Sylow 2-group J; of J which contains ZI. By
definition JC Ce(x). Let T be a Sylow 2-group of Ce(x) which con-
tains J1. Then T contains ZI. By maximality, 73S H. In particular
J1C H. Again by definition Z(S;) centralizes I. Let J, be a Sylow 2-
group of J which contains IZ(S;), and let T, be a Sylow 2-group of
Ce(x) containing Jo. By definition Ty contains I. If T is contained
in H, then H contains Z(S:). By assumption this would imply
Z(S1)) =Z and 5;C H. Hence T is not contained in H. The maximality
of III yields that HNMTo=1. This implies that J1N\Jo=1I. Thus the
group J/I has two Sylow 2-groups which intersect trivially. Since
g>2, a Sylow 2-group of J/I contains more than one involution.

Any Sylow 2-group of J contains I. Suppose that J; is a Sylow
2-group of J such that Jy\J;#1. Let T be a Sylow 2-group of Cg(x)
which contains J,. Then T,MNH contains JyN\J, which has larger
order than I. By maximality, T,C H. Hence Z centralizes 7. In
particular Z centralizes J;. This implies that ZC J,. All the assump-
tions of (2.20) are satisfied for J/I. It follows that J/I is a (TI)-
group.

By the structure theorem for (7I)-groups [34], there is a subgroup
K of J of odd order such that K normalizes a Sylow 2-group J; of J
and acts transitively on the set of involutions of Ji/I. Since K
normalizes J; and Z is weakly closed in J;, K normalizes Z. This
implies that ZI/I contains all the involutions of Jy/I. By definition
T, is a Sylow 2-group of Ce(x). Hence T is conjugate to T. We have
shown that T1C H. Let L be a Sylow 2-group of H which contains T7.
Set M =Z(T1). Then M centralizes I and J:. Hence M CJ,. Since
M is elementary abelian, and since ZI/I contains all the involutions
of J1/1, we conclude that M C ZI. The group K is a subgroup of odd
order in J=ICg(I). Hence KC Cq(I). This implies that [M, K]
c|zI, K]CZ. By definition LCH. Hence [M, K, L]1C[Z, L]=1.
Since L normalizes M, we have [L, M, K]CZ. By the three sub-
groups lemma [17], we obtain [K, L, M]CZ. The groups L and M
are conjugate to S and Z(T) respectively in H. Since K normalizes
Z, K normalizes H. Thus [K, L] is a subgroup of H. By an easy
computation we prove that any element % of H satisfying [k, M|CZ
centralizes M. Hence we have [K, L, M]=1. The three subgroups
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lemma yields that [L, M, K]=1. This is a contradiction since
ZC[L, M]and [Z, K]##1.

(c) Z is a normal subgroup of G.

PRrOOF. Suppose that (c) is false, and let Z; be a conjugate sub-
group of Z different from Z. Let x be an element of Z(T)—0 and
let y be a nonidentity element of Z;. Since x is not central, there exists
an involution w of G such that w commutes with both x and y, and
that either wx or wy is central ((2.18)). By (b), w is contained in H,
so is wx.

If wx is central, wx&Z by assumption. Hence w&EZ(T) —0, and
yEH by (b). Since v is central, this implies that y&Z. This is not
the case as ZMZ;=1.

If, on the other hand, wy is central, wy&Z; because wy commutes
with y. This implies that w&Z;; in particular, w is central. Since
wEH, we have w&Z. This is a contradiction because w&EZMZ;.

(4.2) Suppose that P—Z contains a central involution. Then there
exists precisely one conjugate class of central involutions.

PRrOOF. Let z; be a central involution of P—Z. Set Z;=Z(Cs(z1)).
Since P is self-centralizing, Z:Z P by (3.1) (ii). We have ZNZ,=1. By
(2.11) (v) elements of Z;—1 are conjugate to each other in H. This
proves (4.2).

(4.3) Suppose that P—Z contains a central involution, but no involu-
tion of Z(T) — O is central. Then P is a normal subgroup of G.

PRroOOF. Propositions (3.4), (3.6) and (3.7) yield that no involution
of H—P is central. By assumption every involution of P is central.
Set

O=2Z(T)NO and Y =Z(T)N P.
We prove a series of lemmas.
(a) Ng(P) acts transitively on the set of involutions of P.

ProoF. The group H is a subgroup of N¢(P) and acts transitively
on P—Z. Let y be an element of Y—Z. Then Cs(y)=TP=U. Let
S: be a Sylow 2-group of Cg¢(y) which contains U. By (3.2) (iii),
SiC Ne(T); in particular S; normalizes U. Since S and S; are two
Sylow subgroups of Ng(U), there is an element ¥ of Ng(U) such
that S; =52 Involutions of P# are central, and no central involution
liesin U—P. Hence P*=P. Thus x is an element of Ng(P). Since P
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is self-centralizing, Z*C P. Clearly ZNZ#=1. If x is an involution
of Z, 2% is an element of P—Z. Hence 2* is conjugate to y in H. Since
x&E Ng(P), z is conjugate to y in Ng(P). The lemma (a) follows im-
mediately.

(b) Na(P)—P contains no central involution.

PRrOOF. Since P is a 2-group, any involution of Ng(P) centralizes
some involution of P. Let # be a central involution of Ng(P). There
is an involution v of P which commutes with «#. Let z be an involu-
tion of Z. By (a), there is an element x of Ng(P) such that z=1°.
Then %* is a central involution of Cg(2) = H. This implies #*& P and
hence v &P.

(c) P is a TI-set: that is, PN\P*#1 implies P = P>,

ProoF. Let z be an involution of Z. Suppose that PN P?#1 and
choose an involution # of PMP= By (a), there is an element v of
Ng(P?) such that z*?=wu. Similarly there is an element w of Ng(P)
satisfying #=z“. The element xvw' belongs to H. Since P is a
normal subgroup of H, we have P»=P=*, By definitions of » and w,

P=Pr= P = P,
(d) An element of Z(T) — O is conjugate to an element of O'—Y.

ProoOF. Let N be the subgroup of N¢(U) which is generated by
Sylow 2-groups. By (3.2) (ii), N normalizes T, so Nactson U/T. Since
T contains the commutator subgroup of S, N acts trivially on U/T.
We have Y=Z(U), so N acts on Y and Z(T)/Y. The sub-
group U acts trivially on ¥ and Z(7T)/Y. Set Uy=N/U. Then both
Y and Z(T')/ Y are U,-groups. We claim that they are Ujy-isomorphic.
Choose an element % of U—1T. The mapping

x— [x, u] (z€ Z(T))

defines a homomorphism of Z(T) into Y. The kernel of this homo-
morphism is Z(T)NCe(u). Since u&€ U—T, we have Z(T)NCgq(u)
=Y. Thus the above homomorphism induces an isomorphism f of
Z(T)/Y onto Y. We have f(Yx) =[x, #]. Let v be an element of N.
Then v acts trivially on U/T. Hence u®=tu for some element ¢ of 7.
It follows that

J(¥Ya) = [a%,u] = [a», w] = f(¥2)".
This proves that f is a Us-isomorphism of Z(T)/Y onto Y. Every

involution of Y is contained in the center of some Sylow 2-group of
N¢e(U) and hence conjugate to an involution of Z. This implies that
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every element of Z(T)/Y is conjugate to an element of f~!(Z). By
definition f~1(Z) =0’/ Y. This yields the assertion.

(e) Let x be an element of O'— Y. Then every 2-element of Cq(x) is
contained in N ¢(P).

ProoF. Let y be an element of ¥ —Z and let 2 be an involution of Z.
By assumption both y and z are central. We have Cq(x, z) = Cu(x).
By (2.11, iv), Cs(x) is a Sylow 2-group of Cx(x) and IS: Cg(x)| =q.
On the other hand, a Sylow 2-group of Ce(x, 2z) has order equal to
| T'| . This implies that y and z are not conjugate in Cg(x).

Set W= Cg(x). Let W, be a Sylow 2-group of C¢(2z) which contains
W. There is a Sylow 2-group S; of G containing W;. Then Z(S))
centralizes Z and so normalizes P by (c). This proves that Z(S;) C P.
Since Z(S:) centralizes T, it is contained in Z(T). Therefore Z(S;)
CPNZ(T)=Y. There exists a Sylow 2-group of C¢(Z(S;)) which
contains U= Cg(Z(S1)). By uniqueness (2.11) (vi), S:1 contains U.
Suppose that S;#S. Then U=SNS;, and W="U. Since x&EZ(W),
we have x&€Z(U) =Y, which is not the case. Hence S;=.S and this
implies that W is a Sylow 2-group of Cg(x).

Let W’ be any Sylow 2-group of Cg(x). Choose an element 2z’ of
Z(W'’) which is conjugate to z in Cg(x). Then 2’ is not conjugate to y
in Cg(x). By (2.18) there exists an involution w of C¢(x) such that w
commutes with both y and 2/, and wy is central. The element wy
commutes with an element y1 of P. By (c), wy normalizes P, and
hence by (b) wy&EP. Thus wEP. Since 2z’ centralizes wEP, the
same argument proves z'&P. Therefore Cg(z’)SNe(P). Since
W'C Cq(z'), we have W Ng(P).

(f) P is a normal subgroup of G.

PRroOF. Suppose false and let P’ be a subgroup, P, conjugate to P.
Let x be an element of O’ — Y and 2 be an involution of P’. Then x is
not conjugate to z in G. There exists an involution w of Cg(x, 2z) such
that xw is conjugate to x or 2.

Suppose that xw is conjugate to x. Then wsz is conjugate to z. This
implies that wzE P’ and w&EP’. On the other hand w&E N¢(P) by (e).
Thus w is a central involution of Ng(P). It follows from (b) that
wE&P. This is a contradiction because PNP’'=1 by (c).

Suppose that xw is conjugate to 2. Then xw is a central involution
which lies in Ng(P). Hence by (b), xw&EP. Since x&0'—Y and
PCO, we conclude that w&O0—P. The element w is conjugate to
an element of 0’—Y in N¢(P). By (e), any 2-element of Cg(w) is
contained in Ng(P). This implies that z is a central involution of
Ng(P). By (b), we have z& P, which is a contradiction.



1066 MICHIO SUZUKI [November

5. Structure of some local subgroups. In this section we make the
following standing assumption:

P —Z contains a central involution.

This assumption implies that there is precisely one conjugate class
of central involutions by (4.2).

We choose a complement K, of S in Ng(S) and fix it throughout
discussion. The structure of Ko was stated in (2.7). K, is isomorphic

to the factor group of the group of (zn—2)-tuples (u1, - - -, Mn—2) Of
nonzero elements p, * - -, ta—2 of F (equipped with the component-
wise multiplication) by the subgroup consisting of (A, - - -, N)

where A»=1. Thus K, is an abelian group of exponent ¢—1 and order
(g—1)*2/d where d is the greatest common divisor of » and ¢—1.

There is a complement of S in Ng(S) which contains K,. Let K
be such a complement. We will fix K too. If ¢=2, N¢(S) centralizes
Z,so we have K=1.

(5.1) If ¢>2, Cs(K) =1.

Proor. Clearly we have Cs(K)Z Cs(K,). By (2.7), Cs(Ko) =Z. The
assumption at the beginning of this section implies that involutions
of Z are conjugate. By Burnside’s lemma [9], they are conjugate in
Ng(S). Therefore K acts transitively on the involutions of Z; in
particular K does not centralize Z if ¢>2.

The strucutre of K emerges from the study of the structure of
Na(U).

(5.2) Ng(U) contains a normal subgroup L of odd index such that
L/U=¢Ly(q). Furthermore, L contains an involution ¢ such that

Ne(U) = (S, K,t) and ¢E Ng(K).

ProoF. By assumption there is a Sylow 2-group S; of Ng(U) such
that SNS;= U (the first paragraph of the proof of (3.5)). Since U
is a maximal intersection of Sylow groups, Ne(U)/U is a (TI)-group.

If ¢=2, we set L=Ng(U) and verify the assertions easily. So
assume that ¢>2. The group Ng(U)/U is a (TI)-group with an
abelian Sylow 2-group of order ¢. Hence by the structure theorem of
(TI)-groups [34], N¢(U) contains a normal subgroup L of odd index
such that L/ U=2L,(q). Since L is normal, we have

Ne(U) = LN&(S) = LK.
By (4.4) of [32, IV], Ng(U) contains an element x such that x2€ U

and x normalizes UK. Set X =(UK, x). Then X = UNx(K). Since U
is normal, Nx(K)N\U centralizes K. By (5.1) we have Cg(K)=1.
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This implies that Nx(K)N\U =1 and the extension of X over U splits.
Hence there is an involution ¢ in the coset Ux such that tE Nx(K)
and (S, t)=L. It follows that Ng(U) =(S, K, ¢).

(5.3) K is isomorphic to the direct product of K¢ and the cyclic group
of order ¢—1.

Proor. We may assume that ¢>2. Let L be the normal subgroup
of Ne(U) given in (5.2). Since L/ U is isomorphic to Ly(q), LNK is a
cyclic group of order ¢—1. The factor group L/ U acts on Z(U) and
the action is the natural one. Hence LNK acts regularly on Z. K
induces a permutation group on Z—1. By assumption (2), the
stabilizer of an involution of Z stabilizes all elements of Z. Thus K,
is the stabilizer and is a normal subgroup of index ¢—1. Since
LNKy=1, we have K=K (LNK). Since L is normal, LNK is a
normal subgroup of K. Thus, K=Ky X(LNK).

(5.4) Suppose that N ¢(Z) does not contain N a(P). Then Ng(P) has
a series of normal subgroups 1CPCGiCGCNe(P) such that Gi/P
is a cyclic group of order (¢—1)/d,

Gz/Gl = Ln-—l(Q) and NG(.P)/G]_ = PGL(n hd 1, q).
Furthermore [N ¢(P), Gi]CP.

Proor. As in (4.3, a), Ng(P) acts transitively on the involutions
of P. Let Q be the subgroup of S consisting of matrices of the form

(x 1)

where X is an (2—2, 2) matrix. Then Q is an elementary abelian
subgroup and self-centralizing. The intersection PNQ is of order
g"2. We define an incidence structure P= (P, B, I) as follows:

PB: the totality of conjugates of Z,
B: the totality of conjugates of PN\Q,
I: containment.

Elements of P are called points and elements of 8 are blocks. N¢(P)
induces a group of automorphisms of this structure. By assumption
Ng(P) induces a doubly transitive permutation group on P. We
want to prove that Ng(P) is doubly transitive on 8. This follows if
P is a symmetric design by a theorem of Parker [29]. We use the
same idea. Let I be the incidence matrix of P. If X is a point, the
number of blocks containing X is a constant, say a, since Ng(P) is
transitive on P. Similarly the number of blocks incident with two
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distinct points is another constant, say b. Since a block can not
contain all points, we have a#b. Clearly a = 1. If ‘I is the transposed
matrix of I, then the entries off the main diagonal of I*I are b; while
the diagonal entries are a¢. Hence I‘I is nonsingular. This implies
that |B| <|B|. If |B| =|®B|, I is nonsingular and intertwines the
representations on points and blocks. So N¢g(P) is doubly transitive
on B.

We prove that points on a block form a partiton of involutions of a
block (remember that a block is a subgroup). Let X be a point and
Y be a block. Suppose that XM Y contains an involution x. The
point X is a conjugate of Z and Y=PNQ¥ for some y&E Ng(P).
Both P and Q¥ are self-centralizing abelian subgroups. Hence by (3.1),
X is contained in both P and QY. Thus, XN Y1 implies XCY.
Since every involution of P is contained in some conjugate subgroup
of Z, a block is partitioned.

We will prove | B| =|98|. We have

[B] =@ 1= 1)/@g—1).

Suppose that | B| | B|. Since | B| =|B|, we have || <|B|. Hence
there is a pair (X, ¥) of blocks X and Y such that X# Y and XY
is a proper subgroup of P. In particular |XY:X| <g. Since the
block Y is partitioned into points, there is a point W in ¥ which is
not contained in X. Then by (3.1) we have XMW =1. Hence

g=|xw:x| = |X7:X| <yq,

a contradiction.

We have shown that N¢g(P) induces a doubly transitive permuta-
tion group on B. The stabilizer of the point Z is Ng(Z), and clearly
it is transitive on blocks incident with Z. It is easy to see that Z is
the intersection of all the blocks which contain Z. Let G; be the kernel
of the representation of N¢(P) on B. Then G; stabilizes all the points,
and coincides with the kernel of the representation of Ng(P) as a
permutation group on PB. We have HNG, =P, as the elements of
HN\G, centralizes P. We apply a theorem of Ito [21] to Ne(P)/G:.
The group OG:1/G, leaves all the blocks incident with Z invariant.
We conclude that Ng(P)/G, is isomorphic to a subgroup of the group
of all the projectivities of the projective space of dimension #—2
over F, and that Ng(P)/G, contains a normal subgroup G./G: which
is isomorphic to L,—1(g). If ¢g=2, the order of Ng(P)/P is equal to
that of L,_1(2). Hence we have P =G;. This proves (5.4) for ¢=2.

It remains to prove that Nq(P)/Gi=PGL(n—1, ¢) and Gi/P is
the cyclic group of order (¢g—1)/d when ¢>2. Consider the action of
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K on P. Since | K| is relatively prime to | P|, P is completely re-
ducible as K-module. Since K is abelian of exponent ¢—1 by (5.3),
each irreducible K-invariant subgroup of P is of order ¢ (recall that
Cp(K)=1 by (5.1)). Hence we have

P=Z+ P+ -+ Pn,

where each P; is an irreducible K-invariant subgroup of order ¢. K
acts on the set of involutions of P; transitively. Since K is abelian,
the index of Cx(P;) in K is ¢g—1. By (5.3) we have | K| = (¢—1)""1/d.
Let K; be the intersection of all Cx(P;), =1, - - -, n—2. Then K;
acts semiregularly on the set of involutions of Z, and we have
| K1| = (¢g—1)/d. Since KiN\Ko=1, K; is by (5.3) a cyclic group whose
order divides ¢—1.

By (2.7), elements of K, correspond to matrices with yy, * * -, ta—2
on the main diagonal. There are irreducible Ky-invariant subgroups
Q; of P on which K, acts as the scalar multiplication of the field ele-
ment p~w; for =1, 2, ..., n—2, where p2u; - - - u,_2=1. The
groups Q1, * - -, Q.2 are mutually nonisomorphic as Ko-modules.
Hence they are the only irreducible K¢-invariant subgroups of P not
contained in Z. This proves that the set {Ql, N Q,..z} coincides
with the set {Pl, o e e, P,,_z}. Let w be a generator of the multi-
plicative group F* of F. If x is an element of K, corresponding to the
matrix for which

BL=H2 = ¢ = gy = @

x acts on each P; as the scalar multiplication of w". As shown before
the subgroup K; acts on Z as a cyclic subgroup of F* of order at least
(g—1)/d. By definition, d is the greatest common divisor of ¢—1
and n. Hence K; contains an element y which acts as the multiplica-
tion of w®. The product xy acts as the multiplication of w® on P con-
sidered as a vector space over F, so that xy&G;. This proves that
G1/P contains a cyclic subgroup of order (¢g—1)/d.

The incidence structure P defined earlier is the block design deter-
mined by the one-dimensional and (#—2)-dimensional subspaces of
the vector space P over F. Each element of H induces a linear pro-
jectivity on P. In fact, if an element % of H corresponds to the matrix

X
Y , x%(det V) =1,

x

then & transforms an element of P
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1 1
A T into |x¥Y14 1
z 1 3z 1

We have
det(x¥—1) = wm2(det 7)™ = an
The index of PSL(z—1, q) in PGL(n—1, ¢) is the greatest common

divisor of #—1 and g—1. Hence the image of H in Ng(P)/G: is a
subgroup of PGL(z—1, ¢g) and covers the section

PGL(» — 1,¢)/PSL(n — 1, q).
Thus, N¢(P)/G, contains a subgroup isomorphic to PGL(z—1, g).
We have
| Ne(P)| = (= D[ H| = | P|| GL(n — 1,9 /4,
= | P||PGL(n — 1,9)| (¢ - 1)/d.
On the other hand,
| Ne(P): P| = | Na(P):G:]|]| Gi: P|,

(g—1)/d £ |Gi: P| and |PGL(n —1,9)| £ | Ne(P): G4 .
Hence we have the equality signs in both places. This implies that
Ne(P)/G1=PGL(n — 1, ¢)
and G/ P is the cyclic group of order (g—1)/d. Since L,_,(g) is simple,

we conclude that N¢(P) is generated by conjugates of H. This yields
that [Ne(P), G1]SP.

(5.5) Ng(Z) does not contain Nq(P), unless n=>35 and q=2.

PRrOOF. Suppose that Ng(P)S Ng(Z). By (5.2), Ne(U) contains
an involution ¢ such that S;=S* is a Sylow 2-group of N¢(U) differ-
ent from S. Set Z;=2Z(S:1). Then Z, is contained in Z(U). By defini-
tion (2.9), U=TP. Hence we have

Z(U) = PN Z(T) C P.

Thus Z(U) =Z X Z, and t exchanges Z and Z;. Since Ng(P)S Ne(2),
Pt is different from P. The element ¢ normalizes U and hence T by
(3.2) (ii). This proves that P*is an elementary abelian subgroup of U,
which is normalized by T but not contained in 7. The structure of
such a group has been studied in (2.12) ().
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Since P is normalized by Cg(Z), P! is normalized by Cg¢(Z,), in
particular by Cg(Z;). We verify easily that the element corresponding
to the matrix

x
Y (x3(det V) = 1)
xl,
belongs to Cy(Z;). By (2.12) (i), elements of P* are of the form
1
A I
C D I

where D is a 2 X (n—2) matrix such that the columns, except possibly
the first and the second, are zero. Since Cgr(Z;) normalizes P?, the
matrix

x -1 x 1
(M)' v 4 7 Y = (4" I
l xl C DI 2l (¢ D I

belongs to P! for any x and Y such that x3(det ¥)=1. Taking det ¥
=x=1, we compute (5.6) and find that D'=DY. If n=6, it is
obvious that D’ does not have the form (E, O) with a 2 X2 submatrix
E for some choice of ¥ with determinant 1. This yields that n=35.

By (2.12) (i), the submatrix D is determined by 4 ; in fact for some

# and v
D=G“W> ﬁA=C>
Y Qv B
Similarly D’ is determined by 4’ with the same « and v. Set

A u
Y=< ) and A = det Y.
v o

I,_]__1_<n u)
A\r A’

By (5.6), xY-'A =4’ and x~1DY =D’. This yields that
(5.7 B = 21BN + av) = (x/A)(va + AB).

Then we have
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Note that either % or v is nonzero as P # P*. Since (5.7) holds for any
a and B, we must have x~'=x/A, or A=x2 The value A of the deter-
minant is arbitrary except that there must be an x such that x’A=1.
Since A =x2, we have A’=1. Since A may be an arbitrary third power,
we have w®=1 for all nonzero elements of F. Thus g=2, 4 or 16. But
if ¢g—1 is divisible by 3, we can choose x#1 such that x*=1. Then
for A=1, we have A=x2?=1. This is a contradiction. Hence we have
g=2.

(5.8) P is a (TI)-set and N q(P) acts transitively on the set of involu-
tions, unless n=>5 and ¢=2.

Proor. The second assertion follows easily from (5.5). Proof same
as the one of (4.3) (c) yields the first.
If we make the assumption:

R — Z contains a central involution,

then the argument of this section yields propositions similar to (5.2)
and (5.4) which determine the structure of Ng(V) and Ng(R) re-
spectively.

(5.9) Suppose that R—Z contains a central involution. Then Na(V)
contains a normal subgroup of odd index, which is isomorphic to Ly(q).
Furthermore there is an involution s such that

Ne(V) = (S, K,s) and s E Ng(K).

(5.10) Suppose that N g(R) is not a subgroup of Ne(Z). Then Ng(R)
contains a normal subgroup Gs such that PCTG3S Ng(R), Gs/P is the
cyclic group of order (g—1)/d, Na(R)/Gs is isomorphic to PGL(n—1, q)
and [Ng(P), Gs] S P.

(5.11) Ng(R) is not a subgroup of No(Z) unless n=>5 and g=2.

Propositions (5.5) and (5.11) may be stated in a slightly different
manner.

(5.12) We have Ng(U)C Ng(P) and Ng(V)C Ng(R), unless n=>35
and ¢=2.

PRroOF. Suppose that either =5, or ¢>2. The proof of (5.5)
actually shows that an element ¢ of Ng(U)—Ng(S) belongs to
Ng(P). It follows from (5.2) that

Ne(U) = <S’ K, t) C Ng(P).
Similarly we prove Ng(V)ZS Ng(R).
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6. Construction of a subgroup isomorphic to L,(¢g). In this section
we assume

(6.1) (i) P—Z contains a central involution;

(ii) Z(T) —O contains a central involution;

(iii) either n=6 or n=35 and ¢>2.
All propositions of this section are proved under the set of assump-
tions (6.1). Our goal is to construct a subgroup Go which is isomorphic
to L.(g). Simple consequences of (6.1) are the following.

(6.2) (i) There is precisely one conjugate class of central involutions.

(ii) Ng(U) involves Ly(q); in particular there exists a Sylow 2-group
Sy such that SNS;=U.

(iii) Ng(P) involves L,_1(q), and has the structure stated in (5.4).

ProoF. Proposition (i) is the restatement of (4.2), and (ii) follows
from (5.2). The last proposition (iii) is a consequence of (5.4), (5.5)
and the assumption (6.1) (iii).

(6.3) (i) R—2Z contains a central involution.

(1i) Ng(V) involves Li:(q), and has the similar structure as Ng(U).

(iii) Ne(R) contains a mormal subgroup G such that Gs/R is the
cyclic group of order (¢—1)/d and Ng(R)/G:=PGL(n—1, q).

(iv) N(T)/T contains a normal subgroup of odd index which is a
direct product of two copies of La(q).

ProoF. By assumption (6.1) (ii) there is a central involution z in
Z(T)—0.Wehave Cs(2) =T by (2.11) (iv). Let Sy be a Sylow 2-group
of C¢(z) which contains T. Since z is central, Sy is a Sylow 2-group
of G. We have SNSy=T. We apply (2.19) to Ne(T)/T. By (6.2) (ii),
there is a Sylow 2-group S; such that SNS;=U. Hence by (2.19)
there must be a Sylow 2-group S, of Ne(T) such that SNS;# T and
SM\S, does not contain U. Set W=.SNS,.

Suppose that g=2. Then there are precisely three maximal sub-
groups of S containing T. Since S:5.S, we have Z(S;) #Z by (2.11)
(vi). Hence the central involution of Z(S:) is contained in (Z(T)MO)
—Z. Since W U, we have W= V and the central involution of Z(S;)
lies in R—Z. This proves (i) for ¢=2. Suppose that ¢>2. By (4.5) of
[32, IV] and (3.3), we have W= V. This implies that Z(S;) CR and
Z(S;)#=Z. Thus (i) is proved.

Propositions (ii) and (iii) are proved in the same way as (6.2) (ii)
and (6.2) (iii). The last assertion follows from (3.5), (6.1) (i) and
6.3) ().

We define subgroups U; of S as follows:

U; = {(aj,‘) € S such that a:y5 41 = 0}.
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By definition Uy=V, U,2= U and all these groups are K,-invariant
subgroups of S which contain the commutator subgroup S’ of S.

(6.4) (i) K normalizes all U; (:=0,1, - - -, n—2).
(ii) For 1=2i=n—3, Ne(U:)SNe(Z).

Proor. Let V;=0;.;U;. Then each V,/S’ is an irreducible K,-
module by (2.7). It is easily seen from (2.7) that these modules V;/S’
are mutually nonisomorphic if ¢>2. Hence they are K-invariant.
Since each group U; is a union of subgroups V;, U; is K-invariant.
This proves (i). If 1=S:=%—3, Z(U;) =Z so that (ii) follows.

We are interested in the construction of a (BN)-pair in G. Define

B = Ne(S) = SK.

We will construct a subgroup N to complete a (BN)-pair of G. We
use terminology related to groups with a (BN)-pair. Thus, a sub-
group which contains B is called a parabolic subgroup. The group
N/K is to be the Weyl group. By assumption the group H/O is a
factor group of GL(z—2, ¢) by a subgroup in the center. So H has a
(BN)-pair. The idea is to extend this to a (BN)-pair of G. The
linear groups involved in our discussion are groups of type 4.
Hence the Weyl groups are the symmetric groups. Let W be the
symmetric group of degree I4+1. An ordered set of involutions
{wi, - - -, w1} of Wis called a distinguished set of generators, if these
elements generate W and satisfy the relations

(wawip)® =1 and (ww;)?2 =1 if li—j[ > 1.

(6.5) Assume that ¢>2. The Ng(K) contains a set of involutions

{to, ti, - + *, taa} such that

(a) tiENG(Ui)fori=0! 17 21 ) n—z;

(b) the group (K, t;, =0, 1, - - - , n—2)/K is the symmetric group
of degree n, and the ordered set {Kto, Kb, - - -, Kt,,_z} is a distin-

guished set of generators; and
(c) P=(PNV)XZ? and R=(RNU)XZ¥, where x=1t,2t,1- - -t
and y=to fo - t,,_.s.

Proor. Set N,= NG(K)f'\Ng(Z), N;= Ng(K)mNg(P) and N,
=Ng(K)NNg(R). By assumption the pair (B, No) is a (BN)-pair
for Ng(Z). It follows from (6.2) (iii) that (B, Ny) is a (BN)-pair of
Ng(P). Similarly (B, Ns) is a (BN)-pair of Ng(R). For each z, Ng(U,)
is a minimal parabolic subgroup of G. If 1 £7=<n—3, we have Nq(U;)
CNg(Z) by (6.4) (ii). Since ¢>2, Ng(Up) S Ng(R) by (5.9). Sim-
ilarly N¢(U) is a subgroup of Nq(P).
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By a theorem of Tits [40], N¢(U:)N\N; contains K as a normal
subgroup of index 2, where j=1 or 2 according as 750 or tn—2.
Since H has a (BN)-pair, Ng(K,)/K, is isomorphic to the Weyl
group. Hence we have No/K=Ng(K,)/K, This implies that N,
=KNg(K,) and in particular Ng(K,) is contained in Ny. The struc-

ture of H yields that H contains an element ¢; (=1, 2, - - -, —3)
which corresponds to the matrix
) 1
J , where J = (1 )
I

It follows easily that ¢;ENu(Ko)N\Ng(U;). Since Ng(Ko) S Ny, we
have
NG’(Ui) N Ni = <K: ti):

where 2=1, 2, - - -, n—3 and j=0, 1 or 2. Theorem of Tits asserts
that the cosets {K¢;} in the natural order form a distinguished set
of generators for No/K. The group Ne(U,)\N, contains a 2-element
to. Either the ordered set {Kto, I Kt,.__a} or the ordered set
{Ktl, -« -, Kt, 3, Kto} is a distinguished set of generators for Ny/K.
K leaves exactly two Sylow 2-groups of Ng(V) by (6.3) (ii). Hence
Z1=t6-1Zto ;éZ and Zg“—"tl-lZ]_tl #Zl. If (totl)zeK, then

— —1
Zy = (toh) Ztoty = teZis = Zs,

a contradiction. Hence the ordered set {Kto, Kt;, - - -, Kt,..s} is a
distinguished set of generators for N,/K. Similarly Ne(U)N\N; con-
tains a 2-element £, such that {Kt, - - -, Kt, } is a distinguished

set of generators for Ni/K. We will show that (fof,—2)?EK. Set
t=1tn_a.

Since Ng(V)S Ne(T) by (3.2) (ii), we have t,&€Ng(T). Similarly
tENg(T). By (6.3) (iv), Ng(T) contains a normal subgroup L of
odd index such that L/T is a direct product of two copies of L,(g).
Let L, and L, be normal subgroups of L such that L/T=(L,/T)
X (L:/T). We may label them suitably so that LyN\S=U. Since £,
and ¢ are 2-elements, they are contained in L. As tENg(U), we have
t&EL,U. Write t=Ilu with IEL; and #E U. Let x be an element of
LiNK. Since ¢ normalizes Ly K, we have

[t, x] e LN K.
Since IE&L,, [I, x] is an element of T. This implies that
[u, ] = [1, 2][t, ] € T(L. N K).
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L,NK normalizes U. Hence [«, x]E U. We conclude that
W, %] EUNTEL,NK)=T.

Since L;/T=2Ly(q) and ¢>2, this happens only when «&T. Thus,
tEL,. Similarly we have t{,EL;. Hence the commutator [fo, ¢] lies
in T. By definition [to, {]EN¢(K). We have

[TNNe(K), KIS TNK = 1.

By (5.1) we conclude that TN\ Ng(K)=1. Thus, [y, t]=1. Hence
(tot)2=8t2€ K. Since IK | is odd, we can choose involutions ¢y and
tn—a. 1f we set y=12oty + - « fo_s, then by definition of ¢; we have ZvC R
but Zv is not contained in U. Hence

R=(RNU) X 2v.

Similarly P=(PNV)XZ* for x =1, - - - ;. This proves (6.5).
Let {t.-, 1=0,1,2, .-, n—2} be a set of involutions of N¢(XK)
which satisfies the conclusions of (6.5). Set

N=(K ty i=0,1---,n—2).

(6.6). Set Go=BNB. Then G is a subgroup of G which has a (BN)-
pair (B, N) such that the Weyl group is the symmetric group of degree n.

Proor. We will prove that G, is a subgroup by showing wBw’' CG,
for any w and w’ of N. Use induction on the “length” of the expres-
sion of w in terms of the distinguished generators £y, + « « , tn2. We
may suppose that w=r is one of the distinguished generators. We
assume that r& Ng(P); the other case being similar. If w’' & N¢(P),
then by a property of a (BN)-pair of Ng(P) we have

rBw’ C Bw'B\J Brw'B.
It remains to prove that
wSw’ C Puww'S

for any wEN,=Ngeg(P)\N and any coset representative w’ of
cosets of Ni1. By (6.5) (b), N/K is the symmetric group of degree n.
Hence 1 and totity « « % (£=0, 1, - - -, n—2) form a complete sys-
tem of representatives. Since Ng(P) has a (BN)-pair, we have a
decomposition S=P;U; (:=0, 1, - - -, n—3) such that PoCP, P, is
K-invariant and

(6.7) i Pisti = fraPidiy  for1<i<n—3.
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We have
wSty = wPUyty = PwtyU,.
Suppose k<n—2. Use induction on k.
wSty - - - 4 S Pwly - + - t1She
= Pwty + + + h1 PrUly
= Pwty « + * tp1 Piti Uy
= PwPty - - - t,Us,
where x =t _1lx—2 - - + to. By (6.7)
Py = Pi, where y=tha-- L.
By (6.5) (b) we have
Yy = Ubp_g - - - bohy where u# & K.
Since P, is K-invariant, every P; is also K-invariant. Hence
Pyy= Pis, where z=li_slis-- - lols
We have z=9t;_3 - - - totp—1x With some vE K. Finally we obtain
P: = P:,, where s=tity - - &
This implies that P& P. Hence
wStes © PwPytosUs S PuwtysS.

Set t=1¢t; - - - t,—3 and consider wSit,_». We have shown that
wStC PwtS. Since S=Z*U by (6.5) (c), we have
wStty—2 & PwiSt,_»
= PwiZ'Ut,_,
= PwZitt, sU
= Puwit,_oU.

This completes the proof that the subset G, is a subgroup. We have in
fact shown that (B, N) is a (BN)-pair for G,.

(6.8). Let Go=BNB be the subgroup defined in (6.6). Then Ge=2L,(q).

Proor. This follows easily from either the theorem of Ito [21] or
Tits [41]. Let G; be a minimal normal subgroup 1 of Go. If x is any
involution of P, Ng(P) contains Cq(x) by (5.8) and the assumption
(6.1) (iii). Hence we conclude that G\ Ng(P)#1. By (5.8), P is a
minimal normal subgroup of Ng(P). It is the unique one because P
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is self-centralizing. Hence PC G\ Ng(P). It follows from the struc-
ture of Ng(R), (5.10), that the normal subgroup of Ng(R) generated
by the conjugates of P contains S. This implies that SCG;. Hence
we have Go=G:B. By a theorem of Tits [41], G, involves L,(g).
Since Go/G: is solvable, G, is isomorphic to L,(g). But Go and L,(q)
have the same normalizer of S. We have Go=Gi.

(6.9). Assume that q=2. There is a set of involutions {t.~, 1=0, 1,
2, «++, m—2} such that the conditions (a), (b) and (c) of (6.5) (with
K =1) are satisfied.

PRroOOF. Since ¢ =2, we have # = 6 by the assumption (6.1) (iii). The
following proof works in the case » =35, if we assume that the struc-
ture of Ng(P) and Ng(R) are as stated in (5.4) and (5.10). Ng(P)
is an extension of P by PGL(z—1, 2). Since a Sylow 2-group S splits
over P, the extension of N¢(P) over P splits by a theorem of Gaschiitz
[12]. Since

PGL(» — 1,2) = GL(»n — 1, 2)

is the full group of automorphisms of P, N¢(P) has a unique struc-
ture. We can identify Ng(P) as the totality of matrices

(:1 X)’

where X range over (n—1)X(n—1) nonsingular matrices and 4
range over all column vectors of size »—1. For each pair of integers
(4, 7), let e;; be the n X7 matrix whose (7, j) entry is 1 and whose other
entires are all zero. Set

%ij = In + €5 &> 5.

Then x;; is an element of S. Define

1
1= J , J=( )
1

I

fori=1,2,--,n—2. Sett=1t,_,.

By (6.3) (iv), Ne(T)/T is a direct product of two copies of Lj(2).
One factor contains U/T and the other V/T. The element T belongs
to the factor containing V/T because ¢ is conjugate to x, ,—1. We will
find an element s =14, in the normal subgroup of N¢(T) generated by
U. It is obvious that there is an element s of Ng(V) such that
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(1) x:zl =Xn2, and

(2) s is conjugate to x5 in Ng(V).

Since s is contained in the normal subgroup generated by U, we
have

(3) the commutator [s, ¢] lies in 7.

We need some properties of the group Q consisting of all matrices

where X range over all matrices of size (n—2, 2). Q is an elementary
abelian group, which admits a group of automorphisms which con-
sists of matrices
)
v)

We summarize properties of Q which will be needed.

(6.10) (i) Q is a normal subgroup of Na(V).

(ii) Q contains precisely four conmjugate classes of imvolutions in
N g(P), whick are represented by %n1, %n2, Xn1%n2 GNE Xn_y 1%ns.

(iii) Q contains three subgroups Qi, Qz, and Qs of order 272 such that
involutions of Q; (2=1, 2, 3) are central and any central involution of Q
s contained in one of Q;.

PRrOOF. Let Ty be the subgroup of T consisting of matrices (a;j)
with Q21 =QA31 =032 =0p—-1 n—2=0p n—2=0p n—1=0- Then the method
used in the proof of (2.12) yields the following result. Any abelian
normal subgroup of T which is not contained in Ty has order at most
¢*™»? and there are precisely two elementary abelian normal sub-
groups of order ¢2™—? which are not contained in T,. This implies
in particular T is a characteristic subgroup of 7. Since S normalizes
Q and Ng(V)C Ne(T) by (3.2), the assertion (i) follows easily.

Set Q1=Qf\P, Q2=<x¢z ’i=3, L n) and Q3=(x,~1 X2 ’l:=3,
4, ..., n). Then Ng(Q)NN¢e(P) normalizes all Q;, and acts transi-
tively on Q;—1. Furthermore the stabilizer of x,, is transitive on
Q1—Z. This proves (ii). Since xj; =Xn2, X21Xn9%21 =Xn1Xn2, €lements of
Q:—1 are central and Q contains no other central involution. This
establishes (6.10).

By (6.10) (i), s normalizes Q. By (2), s is conjugate to xy in Ng(V).
Hence Cq(s) is conjugate to Cq(xz). Thus involutions of Cg(s) are
central. By (6.10) (iii), we have Qj=(Q; in the notation used in the
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proof of (6.10). For each i=3, 4, - - -, n, x,EQ0s and xux’ E Co(s).
Hence we have
4) xj,=x; fori=3,4,-.--,n

We prove that there is an element s of Ng(V) which satisfies the
conditions (1) through (4) and, in addition,

(5) x4y =% ifj23.

Since Ng(V)C Ng(R), s normalizes R. By (2), s acts in R as a
transvection. Hence for each j=3,4, - - -, n—1, we have

x:.j = X¥nj O Xn;%g

where %o =%.1%ns. Choose a minimal integer % such that [x., s]=x,.
Replace s by s’ =x5;'sx;. The element s’ satisfies (1)—(4). In addition
we have [x.;, s'] =1 if 3 <j <k. This process may be repeated. There-
fore there is an element s satisfying all conditions (1)-(5).

We prove next that the conditions (1)-(5) imply

6) [xi, s]=1 if 3<j<q.

Set x =x4; (35j<%) and y=x. (£=3). By the commutator iden-
tity we have

[x: Y, S]”[)’: Sy x]'[s’ X, y]z = 1.

Here we omit the exponent —1 on the middle term of commutators
since every element is an involution. Since j, 2= 3, the first two com-
mutators vanish by (5). Hence we have

[s, %, 3] = 1.
This yields that [s, x] ER. Take #=x;. Then the commutator iden-
tity implies

1s, %, u] = 1.
Hence we have [s, x|EZ(V). If z=[s, x] #1, x is conjugate to 3 ¥ 3
in Ng(P). This is a contradiction because z x,_13 is conjugate to

Xn—11 Xne Which is not central by (3.4).

There is an element s which satisfies

) [S, t] =1
in addition to the conditions (1)-(6).

Let s be an element which satisfies (1)-(6). Set « = [s, ¢]. We claim
that «&Z(T). By (3), « belongs to T. If x=x4 (1Sn—2), we have

QY = xatat = ytat = yat = x

where y=x,2 by (4). Similarly y*=y. Hence ¥&Cqe(Q)=0Q. If j=3,

u tst &t
Xnj = Xnj = Xn—1j = ¥nj
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by (5) and (6). This proves that «&Z(T). By definition u = [s, ¢]
=(st)? and » commutes with both s and f. Hence either =1 or
U =Xp1%¥n_1 1¥n2%a—1 2. In the latter case replace s by s’ =x;;'sx,;. This
element s’ satisfies (1)—(6), and

Is’y t] = (5'8)% = %n12n2(58) %01 1%n—1 2
= 1.

Set to=s for an element s which satisfies (1)-(7). Conditions (a)
and (c) are obviously met. Considering the actions on R, we see that
(st))® and (st;)? (¢=2, - - - , n—3) centralize R. Since R is self-central-
izing, they are contained in R. If ¢#n —3, { commutes with #;. Hence
by (7), t commutes with st;. Since RNR*=1, we have

(Stl)a = (St,')z =1

except possibly 1=n—3. Set (st,—3)2=7 and prove that r=1. We
have xr=x, where x =x,_1:. This implies that 7 is an element of T.
Hence r*&T. We have

rt = (tStn—-st)z = (Stn—sftn—8)27

because (ff,—3)*=1. Hence
rt = (ly_srstly_3)?
= tpa(rst)Hn_3

=7

where v=1,_gr**t, 3. We have shown that 7 is an element of R. Hence
if = (a;), we have a;;=0if 75 and 77 n. Hence only nonzero entries
of %, off diagonal, are in the second row from the bottom. By (4)
and (6) the same is true for 7*. Hence the last two rows of v, except
on the main diagonal, contain zero only. Since v=rr¢, we have r=1.
This proves (6.9).

Propositions (6.6) and (6.8) yield that G contains a subgroup G,
which is isomorphic to L,(2). The subgroup Gy is the one generated
by Sand ¢, (61=0,1, - - -, n—2).

7. Proof of the equality G=G,. In the preceding section we con-
structed a subgroup Gy which is isomorphic to L,(g). In this section
we will show that G=G,.

We may consider G, as the factor group of SL(%, ¢) by the center.
In this way each element of G, is represented by an # X% matrix over
F. We use the notation of (2.6), (2.8) and (2.9). Thus, S is a Sylow
2-group of G, which is represented by the elements (2.6). We may
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assume that Gy, was constructed from Ng(S). By construction G
contains several local subgroups of G.

(7.1) Gy contains Ng(Z). Furthermore if X is a subgroup of S such
that TC X CS, then N g(X)ZGo.

Proor. The constructions (6.5) and (6.9) show that Ng(Z)ZG,.
The involution ¢ is an element of N¢(7V) which does not normalize S.
By (6.3) (ii) we have

Ng(V) = (S, K, to).

Similarly Ne(U) =(S, K, t.—2). Hence G contains N¢(U) and Ng(V).
This implies that Gy contains N¢(T), because Ng(T) is generated
by Ne¢(U) and N¢g(V). The rest of the assertion follows from (3.2) (ii).

Any conjugate class of involutions of Gy contains an element which
is represented by the element j; of (2.2). Let C; denote the conjugate
class of involutions of Gy which is represented by j;. If 2 is an involu-
tion of Z, then zEC;.

(7.2) Let 7 be the involution of S which is represented by j of (2.2).
Set W=C,(j). Then we have Ne(W)S Na(2).

PRrOOF. Let Y be the totality of elements of .S which are represented
by
I
I (A €F).
A, 1

Then the center of W is the direct product Y XZ. Let Z,(W) denote
the second center of W. A simple computation shows that

w, zx(w)] =z, iflz3.

Hence Z is a characteristic subgroup of W if /=3. This proves (7.2)
for 1= 3. The same containment holds in the case /=2 because Z does
not fuse in Z(W)—Z by (3.4).

(7.3) Let z be a central involution which is contained in G,. The follow-
ing hold:

(i) z€Cy;

(ii) If 22EG, for some x of G, then x &G, in particular Cq(2) SG,.

ProoF. By assumption 2z is conjugate to j; in G. Suppose that 2&C;
for some 7 = 2. Then j, is conjugate to j; in G. By (2.17) (i), W= Cs(j)
is a Sylow 2-group of Ca(7:)/MGo. Let S’ be a Sylow 2-group of Cq(j:)
which contains W. Then we have GoN\S’=W. Since S’ contains W
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as a proper subgroup, N (W) is not contained in Go. This contradicts
(7.2). Thus 2E ;. We may assume that z=37 for some wEG,.
Suppose that

5 =41 € G
By (i), 2*&€(C; so z*2=j1 for some y&Go. This implies that wxy—!

€ Cq(jr)- By (71.1), Cs(j1) is contained in Go. Since both w and y are
elements of Gy, we conclude that x EG,.

(7.4) Let Q be a 2-subgroup of G. If QMG contains a central involu-
tion, then Q is contained in Go.

ProoF. Let X be a Sylow 2-group of G which contains Q. By
assumption Q/M\G, contains a central involution z. Since QCX, z
centralizes Z(X). By (7.3) (ii), Z(X)ZGy. Since Z(X) contains a
central involution, the second application of (7.3) (ii) yields that
X CGo.

(7.5) Let j be an involution of Go which belongs to the class C;. Then
any 2-element of Ca(j) lies in Go.

This is the key result. The proof differs according as ¢=2 or not.
In (7.5) we assume that ¢>2. Suppose (7.5) is false, and prove a
series of lemmas.

(a) Let W’ be a Sylow 2-group of Ca(j) such that W’ is not contained
in Go and with this restriction the order of WGy is maximal. Set
I=W'NGo. Then jEI and INCy is empty.

Proor. Clearly j&I. Since W’ is not contained in Gy, INC is
empty by (7.4).

(b) Set J=1I1Cq(I) where I is the subgroup defined in (a). There exists
a Sylow 2-group Wi of Ce(j)MGo such that Jy=JNW, is a Sylow
2-group of J.

Proor. Let S’ be a Sylow 2-group of G, which contains I. Then
Z(S") centralizes I but is not contained in I by (a). Let J; be a Sylow
2-group of J which contains IZ(S’), and let W, be a Sylow 2-group
of Cg(j) which contains J;. Then Go\W; contains IZ(S’) and (7.4)
yields that ngGo.

At this stage we may assume that

j =j2 and W1 = Cs(jz)
by choosing suitable conjugates, if necessary. Set W= Cg(js).
(c) J/Iis a (TI)-group.
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Proor. Set J;=JNW. Then J; is a Sylow 2-group of J. Choose a
Sylow 2-group J; of J such that JiN\J:#1. If W, is a Sylow 2-group
of C¢(j) containing Js, Go/ \W; has larger order than I. This implies
that W.C Go. Hence W, contains the maximal normal 2-subgroup of
Ce(G)MGo. It follows from the structure of G, that Z(S) S W,. Thus
ZCWaNJT =UJ,.

Let Jo be a Sylow 2-group of J which contains IZ(S’). Here S’
is a Sylow 2-group of G which contains W’. If J1N\Jy#1, then J, con-
tains ZI. Hence J, would be a subgroup of G,. This contradicts the
definition of S’. Hence J1"\J,=1I. Since ¢>2, (2.20) is applicable and
yields that J/I is a (T'I)-group.

The structure theorems of (TI)-groups [34] yields the existence
of a cyclic group C of odd order of J which normalizes the Sylow
2-group J; of J and acts transitively on the set of involutions of J1/1.

(d) Cis a subgroup of Ce(I)NMG.

Proor. Since C is odd, we have CC Cg(l). Let x be a generator of
C. Then W* contains J;. Hence W*C Go. There is an element y of
Cs(j)MGo such that W==Wv. Then xy~! is an element of Ng(W).
By (7.2) we have xy'€G,. This implies x €G,.

(e) 7 is mot contained in C..

ProoF. By (d), C is a subgroup of Cg(7)/\Go. This implies that C
normalizes Z(T). This is so because Z(T) is the center of the maximal
2-subgroup of Cg(j)/M\Go. The group Ce(j)MG, induces in Z(T) the
group of automorphisms which is isomorphic to L;(g). Hence C in-
duces a cyclic group of automorphisms of order at most ¢+1. Thus
the group J1/I contains at most g1 involutions. Since J1/I contains
ZI/I, we conclude that ZI/I contains all the involutions of Jy/I.
Take a generator x of C. Suppose that Z*#Z. Then Z*CZI and
ZNZ==1. Hence | ZZ*NI| =g. Since x centralizes I, we conclude
that x normalizes ZZ%. Thus ZZ¢# is a subgroup of Z(T') which con-
tains at least ¢g—1 conjugates of Z and at least ¢—1 noncentral in-
volutions. If ¢>2, Z(T) contains no such subgroup. Hence C nor-
malizes Z. This implies that C normalizes Z(T)N\P and Z(T)NR.
Since l C | is odd, there is a subgroup X of Z(T)NP such that X is
C-invariant and Z(T)NP =X X Z. Similarly there is a C-invariant
subgroup Y such that

Z(DNR=Y XZ.

The group (X, Y, Z) contains Z(W). Since Z(W)Z Cw(I), Z(W) is
contained in ZI. Hence |Z(W)NI| =gq. Since C acts trivially on
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Z(W)N1I, we conclude that C acts trivially on either X or ¥, say X
(in fact trivial on both). By (d), C centralizes I. Hence C centralizes
the commutator [X, I']. Since ICS, this commutator is contained in
Z. On the other hand C acts transitively on the set of involutions of
Z. Hence we obtain [X, I]=1;in other words, X & Cw(I). Since ZI/I
contains all the involutions of J1/I, ZI contains X. Hence ZXCZI.
This implies that I ZXNI| =q. By definition we have ZX = Z(T)NP.
Therefore any involution of ZX is central. Thus IMNZX contains a
central involution. This contradicts with (a).

(7.6) The proposition (1.5) holds even when q=2.

ProoF. Again we suppose that (7.6) is false and prove a series of
lemmas. Set W= Cs(j:) as before.

(a) There is a subgroup T’ of Ce(j) which is conjugate to T, but
not contained in Go.
ProoF. By assumption there is a Sylow 2-group W’ of Cq(j) which

is not contained in Go. Then W’ = W= for some element x. If T*CG,,
then W* would be contained in G, by (7.4).

(b) Let T’ be a subgroup of Ca(j) such that T’ is conjugate to T, T is
not contained in Go and with these restrictions the order T'N\G, is
maximal. There is a Sylow 2-group W' of Ca(j) which contains T'.
If possible, let T' be chosen so that

W' NGy #= T' N Gy.
Set I= T’nGo, Io= W’nGo, J=ICG(I) and Jo=IoCG(I). Then
Iy C\ is empty.

Proor. This is mostly a collection of definitions. The last assertion
follows from (7.4).

(c) Thereis a Sylow 2-group Wy of Ca(j)M\Go such that Jy=JN\Wyis
a Sylow 2-group of J.

Proof is the same as (7.5) (b).
(d) Thereis a conjugate subgroup of T in Ca(j)(MN\Go which contains I.

Proor. By (c), GoNCe(j) contains a Sylow 2-group W; such that
Ji=JNW,; is a Sylow 2-group of J. By definition, K=IZ(T") is a
subgroup of J with order larger than | I|. There is an element x of J
such that K*C J;. Then T" =x—1T"x satisfies

K=CJ N T"gGon T,
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Since |I| <|K*|, we conclude that T"’CG,. Since xEJ, we have
ICT" and TS Ce(j)MGo.

We assume that IS TC Ce(j)/M\Go. This is possible by choosing
suitable conjugate elements.

(e) Ce(j)MGo normalizes Z(T) and induces a group of automor-
phisms, which is isomorphic to L(2).

ProoF. By assumption j is a noncentral involution of Z(T'). Hence
Z(T) is the center of the maximal normal 2-subgroup of Cq(j)NGo,.
So Ce¢(j)NGonormalizes Z(T).

The structure of Gy yields that the group induced in Z(T) is iso-
morphic to Ls(q).

(f) The group Jo/I contains a normal subgroup of index one or two,
which is a (TI)-group. In this (TI)-group, a Sylow 2-group contains
more than one involution.

ProoF. We assume that I=1, for all admissible conjugate sub-
groups of T. This assumption implies that, if W"’ is a Sylow 2-group
of C4(j), which is not contained in G,, the order of W"’NG, is at most
III . Suppose that J, is a Sylow 2-group of J with JyNJ,=1. If W,
is a Sylow 2-group of C¢(j) containing J,, we have

ICIiNT S GoN\ Wo.

Hence W, is a subgroup of Go. This yields that W, contains Z(T) by
(e). Hence Z(T) S J,. Since IC T, Z(T) is contained in J. The group
IZ(T)/I has at least order 4 because Z(T)NPNI=1 by (b). Hence
(2.20) is applicable and yields the result.

Suppose that I#1I, Let K be a Sylow 2-group of JyM\G, which
contains Io. Then K& Gy Ce(j). Thus K normalizes Z(T) by (e).
Set K;=Cx(Z(T)). By (e), we have | K: Ki| 2. The group T is a
Sylow 2-group of C¢(Z(T)). Hence K, is contained in a conjugate
subgroup T of T. We have T1C Gy Cq(j).

Suppose that K =K,. Then KCT}. Since Iy=Go\W’, there is an
element x of W’ which normalizes I, but is not contained in Gy. There
is a central involution z in K. By (7.3) (ii), 2* is not contained in G,.
Hence

ILLCK' CT; and TiC Ce(j),

but 7% is not contained in Gy because 22 T and 2*& G,. This contra-
dicts the definition of I. Hence K #Kj;. In fact, the above argument
proves that K; does not contain I,. Similarly no conjugate subgroup
of Iy in J, is contained in K;. By a lemma of Thompson [39, Lemma
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(5.38)], Jo contains a normal subgroup L of index 2 such that KN\L
=K.

Let K; be a Sylow 2-group of L such that KiN\K,5I. Then K, is
contained in a conjugate subgroup T of T which lies in Cg(j). Since
GoN\T; has a larger order than I, T3 is contained in Gy. Thus 7,C
G Ce(j) and T contains Z(T'). Proposition (2.20) yields that L/I is
a (TI)-group. Since K contains Z(T'), K/I contains at least 3 involu-
tions.

(g) Z(T)N\I is a group of order 4.

ProoF. By (f), Jo/I contains a (T'I)-group L/I. By (c), there is a
Sylow 2-group L of L which is contained in G,. The structure theorem
of (TI)-groups [34] yields the existence of a cyclic group C of odd
order such that C normalizes L, and acts regularly on the set of invo-
lutions of Ly/I. Let W, be a Sylow 2-group of Go\C¢(j) which con-
tains L,, and let T be a conjugate subgroup of T contained in Wj.
Then T1NL; has a larger order than I. If x is a generator of C, T5MN\G,
has a larger order than I. Hence by definition of I, we conclude
TiC Gy and WiCGo. As in (7.5) (d), we have xEGy. Hence CC
GoNCe(j). By (e), Cnormalizes Z(T') and induces a group of automor-
phisms of Z(T'), a subgroup of L,(2). Since C acts regularly on the set
of involutions of L,/I, the order of C must be three and

| z(D): zZ(D)N 1| =4.
This proves the proposition (g).

(h) Set Zy=Z(T)NI.
(1) T 2s a Sylow 2-group of Ce(Zy).
(2) If x is an element of Ce(Z,1), then

Z(T)* N Go S Z(T).

ProorF. Since Z; is a group of order 4 by (g), the first assertion
follows from the structure of Go. Suppose that the element j (which
isin Z;) is a product of two central involutions % and v of C¢(Z1) NG,.
Then # and v are represented in Go by a pair of commuting trans-
vections whose product represents j. There are exactly 3 such pairs.
Hence both % and v are contained in Z(T). If x is an element of
Ce(Zy) and if Z(T)*NG, is not Z;, then there is a pair of central in-
volutions of Z(T)* whose product is j. This implies that Z(T)*NG,
CZ(T).

(i) We have T=Z(T)I.
ProoOF. Let z be a central involution which lies in T'—Z(T). By
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definition there is a Sylow 2-group T of C¢(Z,) such that I=GyN\T}.
Let z; be a central involution of Z(T;). Then 2, is not contained in G,
by (7.4). By (h), the coset 2Z; is not conjugate to 2:.Z; in Cg(Z1)/Z1.
Hence there is an involution wZ; of C¢(Z,)/Z; such that wZ; com-
mutes with both 2Z, and 2,Z,, and wzZ, is conjugate to either 2Z; or
21Z,. Suppose that wzZ, is conjugate to zZ;. Then wz;,Z; is conjugate
to 2:Z;. By (h) applied to a conjugate subgroup of G, containing
Cs(z1), we conclude that wz; EZ(T;). We remark that the coset wz,Z,
contains a unique noncentral involution of G and hence 2, centralizes
every element of wz,Z;. Since wz,EZ(T), we have w& Z(T41). On the
other hand, the coset 2Z, contains a unique central involution. Hence
w centralizes z. This implies wE&G,. So we have

w& GoN Z(Ty) = Z1.

This is not the case. Hence the coset wzZ, is conjugate to 2:Z;. Since
2 centralizes wzZ,, wzZ, is contained in G,. By (h) we have wz&EZ(T),
which implies wE T. Since w centralizes 2;, we have w& Cr(z1). By
definition z; centralizes I. The maximality of I forces

I = Go N CG(Z]_) N CG(Z],).

This implies that Cr(z;) =1 and w&I. Therefore
z = wlwz € IZ(T).
This is true for any central involution z of T—Z(T). Hence T'=1Z(T)
because T is generated by central involutions.
G) INC, is not empty.

Proor. Since n =5, T is different from Z(T). In fact, T contains a
central involution z which is represented by the matrix

E + epz1

where E is the identity matrix and e, is the matrix with 1 at the
(n—2, 1) place and zero elsewhere. By (i),

Z(TD),zsyN T

contains an element w represented by a matrix (a;;) whose entries
below the main diagonal are zero except possibly @n—2 1, Gn-11, Gn_y 2,
@n 1, Gn 2 and @, 1=1. Then for some element % of Z;, uw is repre-
sented by a transvection and uw& G/ I.

This lemma contradicts with (b) and the proposition (7.6) is
proved.
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(7.7) Elements of Cs do not fuse in C; for 15£2.
This is proved in the same way as (7.3).

(7.8) Let u be an involution of Go which belongs to the class Cs. Then
any 2-element of Ca(u) is contained in G,.

ProoF. We may assume that # =j; where j; is given by (2.2). Then
there exists a central involution g of G, such that su ;. We have
jiwE C;. Elements of C; do not fuse in C; by (7.7). Hence 2z is not
conjugate to j; in Ce(u).

Suppose that (7.8) is false. Then there is a Sylow 2-group W, of
Ce(u) which is not contained in Go. Let S; be a Sylow 2-group of G
which contains W;. Since # € W), u centralizes Z(S;). Hence we have
Z(S1) € Wi. There is a central involution 2; of Z(S;) which is conjugate
to j1in Ce(u). By (7.4), 2 is not contained in G,. Since 2, is not conju-
gate to z in Cq(u), there is an involution w such that

w € Ce(z, 21, %)

and wz is conjugate to either z or 2. In either case wz is a central
involution. Since z is a central involution of Gy and w& Cq(z), we have
wEG, by (7.3). Hence w is an involution of Gy which is a product of
two commuting central involutions wz and 2. Hence wE€ C; with 1 2.
This implies that Ce(w) S G by (7.3) or (7.5). But Ce(w) contains the
element 2, which is not contained in Go. This contradiction proves the
validity of (7.8).

(7.9) The group G coincides with G.

Proor. Suppose not. There is an involution ¢ which is conjugate to
2 0f (2.2) in G but is not contained in Go. Let 2 be an element of C;. By
(3.4), z is not conjugate to £ in G. Hence there is an involution w of G
such that

w e CG(Z) t)

and zw is conjugate to either z or . Since Cq(2) EGo, w is an element
of Go. The element zw belongs to (3\J(C;, and w is a product of com-
muting involutions 2 and zw. Since 2& G, we have

w€C1UCzUC3.

By (7.3), (7.5) or (7.8), Ce(w) is contained in G,. But Cg(w) contains
the element ¢ which by definition lies outside Go. This is a contra-
diction.

This proves (7.9), and the proof of Theorem 1 is finished.



1090 MICHIO SUZUKI |November

REFERENCES

1. E. Artin, The order of the classical simple groups, Comm. Pure Appl. Math. 8
(1955), 455-472.

2, H. Bender, Finite groups having a strongly embedded subgroup (to appear).

3. R. Brauer, On the structure of groups of finite order, Proc. Internat. Congr. Math.,
vol. 1, North-Holland, Amsterdam, 1954, pp. 209-217.

4, , On finite Desarguesian planes. 1, 11, Math. Z. 90 (1966), 117-151.

5. R. Brauer and P. Fong, 4 characterization of the Mathiew group Mis, Trans.
Amer. Math. Soc. 122 (1966), 18-47.

6. R. Brauer and K. A. Fowler, On groups of even order, Ann. of Math. (2) 62
(1955), 565-583.

7. R. Brauer and M. Suzuki, Oz Us(g) (unpublished).

8. R. Brauer M. Suzuki and G. E. Wall, 4 characterization of the one-dimensional
unimodular groups over finite fields, Illinois J. Math. 2 (1958), 718-745.

9. W. Burnside, Theory of groups of finite order, Cambridge, 1911.

10. W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J.
Math. 13 (1963), 775-1029.

11. P. Fong, On a characterization of Gs(g) and D3(g), Sympos. Theory of Finite
Groups, Benjamin, New York, 1969, pp. 25-29.

12, W. Gaschiitz, Zur Erweiterungstheorie der endlichen Gruppen, Crelle 190 (1952),
93-107.

13. G. Glauberman, Ceniral elements in core-free groups, J. Algebra 4 (1966), 403-
420.

14,
98.

15. D. Gorenstein, Finite groups the centralizers of whose involutions have normal 2-
complements, Canad. J. Math. 21 (1969), 335-357.

16. , Finite groups, Harper and Row, New York, 1968.

17. P. Hall, Some sufficient conditions for a group to be nilpotent, lllinois J. Math.
2 (1958), 787-801.

18. D. Held, A4 characterization of the alternating groups of degree eight and nine, J.
Algebra 7 (1967), 218-237.

19. , A characterization of some multiply transitive permutation groups. 1,
Illinois J. Math. 13 (1969), 224-240.

20. , Some stmple groups related to My, Sympos. Theory of Finite Groups,
Benjamin, New York, 1969, pp. 121-124.

21. N. Ito, On a class of doubly, but not triply transitive permutation groups, Arch.
Math. 18 (1967), 564-570.

22. Z. Janko, A mew finite simple group with abelian Sylow 2-subgroups and its
characterization, J. Algebra 4 (1966), 147-136.

23. , A characterization of the finite simple group PSp(3), Canad. J. Math.
19 (1967), 872-894.

, A characterization of the Susuki groups, Illinois J. Math. 12 (1968), 76—

24, , Some new simple groups of finite order. 1, Ist. Naz. Alta Mat. Symposia
Math. 1 (1968), 25-64.

25, , A characterization of the Mathieu simple groups. 1, J. Algebra 9 (1968),
1-19.

26. Z. Janko and S. K. Wong, A characterization of the Higman-Sims simple
group (to appear).

27. T. Kondo, On a characterization of the alternating group of degree eleven, I1-
linois J. Math. 13 (1969) 528-541.



1969] CHARACTERIZATIONS OF LINEAR GROUPS 1091

28, , On the alternating groups. 1, 11, 111, J. Univ. Tokyo 15 (1968), 87-97;
J. Math. Soc. Japan 21 (1969), 116-139; (to appear).

29, E. T. Parker, On collineations of symmetric designs, Proc. Amer. Math. Soc. 8
(1957), 350-351.

30. K. W. Phan, A4 characterization of Li(q) for g= —1 (mod 4), Sympos. Theory of
Finite Groups, Benjamin, New York, 1969, pp. 39-42.

31 , A characterization of Ui(g) (to appear).

32, M. Suzuki, On characterizations of linear groups. 1, 11, Trans. Amer. Math. Soc.
92 (1959), 191-219; I11, Nagoya J. Math. 21 (1961), 159-183; 1V, J. Algebra 8 (1968),
223-247; V, VI (to appear).

33. , Two characteristic properties of (ZT)-groups, Osaka J. Math. 15 (1963)
143-150.
34. , Finite groups of even order in which Sylow 2-groups are independent,

Ann. of Math. (2) 80 (1964), 58-77.

35. , Finite groups in which the ceniralizer of any element of order 2 is 2-
closed, Ann. of Math. (2) 82 (1965), 191-212,

36. G. Thomas, A characterization of the groups G:(2"), J. Algebra (to appear).

37. , A characterization of the Steinberg groups D(¢%), =2~ (to appear).

38. ———, A characterization of the unitary groups PSUs(g?), ¢=2" (to appear).

39. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are
solvable, Bull. Amer. Math. Soc. 74 (1968), 383—-437. (Balance to appear.)

40. ]. Tits, Théoréme de Bruhat et sous-groupes paraboligues, C. R. Acad. Sci. Paris
254 (1962), 2910-2912.

41, , Buildings of spherical types and finite BN-pairs (to appear).

42, H. Wielandt, Besiehungen zwischen dem Fixpunkizahlen von Automorphis-
mengruppen einer endlichen Gruppe, Math. Z. 73 (1960), 146-158.

43. W. J. Wong, A characterization of the alternating group of degree 8, Proc. Lon-
don Math. Soc. 50 (1963), 359-383.

4, , A characterization of PSpa(q), ¢ odd, Sympos. Theory of Finite Groups,
Benjamin, New York, 1969, pp. 31-38. Trans. Amer. Math. Soc. 139 (1969), 1-35.

45, , A characterization of the finite projective symplectic groups PSpe(q) (to
appear).

46. H. Yamaki, 4 characterization of the alternating groups of degrees 12, 13, 14, 15,
J. Math. Soc. Japan 20 (1968), 673—-694.
47. , A characterization of the simple group Sp (6, 2) (to appear).

INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540 AND
UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801



