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When a Hermitian linear operator A is slightly perturbed, by how 
much can its invariant subspaces change? Given some approxima
tions to a cluster of neighboring eigenvalues and to the corresponding 
eigenvectors of a real symmetric matrix, and given a lower bound 
S > 0 for the gap that separates the cluster from all other eigenvalues, 
how much can the subspace spanned by the eigenvectors differ from 
that spanned by our approximations? These questions are closely 
related; both are investigated here. First the difference between the 
two subspaces is characterized in terms of certain angles through 
which one subspace must be rotated in order most directly to reach 
the other. The angles constitute the spectrum of a Hermitian operator 
©, with which is associated a commuting skew-Hermitian operator 
J=—Jz; the unitary operator that differs least from the identity 
and rotates one subspace into the other turns out to be exp(/@). 
These operators unify the treatment of natural geometric, operator-
theoretic and error-analytic questions concerning those subspaces. 
Given the gap ô, and given bounds upon either the perturbation 
(1st question) or a computable residual (2nd question), we obtain 
sharp bounds upon unitary-invariant norms of trigonometric func
tions of ©. (A norm is unitary-invariant whenever | | i | | = | | C /LFI | 

for all unitary U and V. Examples are the bound-norm | |L | | I 

= supj|Lx||/||x|| and the square-norm | | i | | , f f= (trace L*L)1/2.) 
In this note we consider a finite-dimensional unitary space 3C in 

which the scalar product is denoted by y*x, and ||x|| = (#*#)1/2. 
Proofs of the following statements will appear elsewhere, together 
with extensions to infinite-dimensional Hubert spaces and to non-
compact or unbounded operators [2]. Tha t article discusses the 
relation of 'our results to earlier work on the subject, such as [ l ] , 
[3], [4]. 

1. Subspaces and isometries. There are two convenient ways to 
identify a subspace of 5C. On the one hand, let P be the orthogonal 
projector (P = P* = P2) onto that subspace, which is then denoted 
by PJC. On the other hand, let e\, e2t • • • , en be an orthonormal basis 
for the subspace; then E = (ei, e2, • • • , en) denotes an isometry map
ping column w-vectors into the subspace, which is now interpreted as 
the range (ft(E). Orthonormality of the e/s means E*E = ((ei*ej)) 
= 1, the identity operator on the w-space; (R(E)=P3C means P 
= £ £ * = ]Ci0*0*- Note that the subspace does not determine E 
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uniquely, but only to within post-multiplication by an arbitrary 
unitary nXn matrix. The orthogonal complement of^P3C is P5C 
where P^l— P ; then the equations ÊÊ* = P and^ Ê*Ê = 1 define, 
to within unitary post-multiplication, an isometry Ê complementary 
to E in the sense that (£ , Ê) is formally unitary: 

/E*E E*Ê\ / l 0\ 

and (E, £ ) (£ , £)* = EE* + ÊÊ* = 1. 

2. Angles between subspaces. Let P3C = (R(£) and Q3Q, = Gi(F) be 
two subspaces given together with their projectors and isometries, 
with n = dim P3C and w = dim ÇJC. For simplicity, assume n^m and 
n+m ^ d i m 5C. The separation between these subspaces is unchanged 
by the following transformations: 

(i) Pre-multiply E and F by the same arbitrary unitary operator, 
(ii) Post-multiply E or F (or Ê or F) by an arbitrary unitary 

matrix. 
Transformation (i) rotates both subspaces simultaneously without 
altering their relative positions, while (ii) merely changes coordinates 
within each subspace. Consequently the separation between the 
subspaces is characterized by the invariants of the matrix 

when C and S are pre-multiplied by independent arbitrary unitaries 
or post-multiplied by the same arbitrary unitary matrix. Since 
C*C+S*S= F*F= 1, coordinate systems can be so chosen as to exhibit 
the matrices 
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simultaneously in essentially diagonal forms, where 7» = cos 0* and 
<Ti = sin 0i for angles 0 i è 0 2 è • • • ^6n in 0^0» âfl"/2. These angles, 
"the angles between the subspaces," are the invariants that charac
terize the separation between the given subspaces. The Hermitian 
operator © can now be defined via its matrix in the foregoing coordi
nate system ; 

0 = (E,Ê)dmg(6he2, • • -,0n,O,O, • • • ,O,0x,02, • • • A , 0, 0, • • • ) 

m — n 

<E,Ë)*. 

We shall also need @o = diag(0i0g, • • • , 0n). 

3. The direct rotation. We define a unitary operator U whose 
matrix, in the co-ordinate system that essentially diagonalizes C and 
S above, is: 

(E,Ê)*U(E,Ê)-

Yl 

Y» 
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Evidently U = exp(J@) for a suitable skew-Hermitian / = — J 3 which 
commutes with ©. This unitary U is called the "direct rotation" of 
P5C into Q3C partly because UP3CQQ3C. But the last relation is also 
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satisfied by many other unitaries U\ what distinguishes the direct 
rotation from the others is the following theorem: 

Of all unitary U satisfying Z7P3CÇZQ3C, the one which minimizes 
each unitary-invariant norm of (1 — U) * (1 — £/), including in particu
lar || 1— C/||? and || 1 — U\\2

SQ% is the direct rotation U defined above. Fur
thermore, if all Oi^w/3 and 3C is a real space, every unitary-invariant 
norm of (1 — U) is minimized too. 
To simplify matters, let us further assume that P3Cn()3C = 0, so all 
6i<w/2; then the theorem characterizes the direct rotation uniquely. 
And also we obtain a coordinate-free construction for the direct 
rotation : 

Let T be the orthogonal projector onto P3C©(Q3Cf\p3C); then the 
direct rotation is the principal square root of (Q — Q)(T—T), that is, the 
unitary square root with spectrum in the right half-plane. 
The construction is especially simple when n = m because then T — P. 
(But when some 0» = 7r/2, the construction must be altered to allow 
for the nonuniqueness of direct rotations.) 

Various other measures that have been used to describe the separa
tion between two subspaces can be expressed in terms of ©. For 
example: 

||sin ©]|i = sup||&>|| over p £ P3C with ||^|| = 1. 

2||sin |©| | i = sup(inf||ç - p\\ over q £ Q3C, \\q\\ = 1) 

over p £ P3C, \\p\\ = 1. 

||sin ©o|| H |0£ | J =\\QP\l 2||sin §©|| = | | l - U\\, and ||sin ©|| = \\P-Q\\ 
for all unitary-invariant norms. 

4. Question 1—perturbation. A Hermitian operator A is given 
together with some of its orthonormal eigenvectors ei, £2, • • • , en; 
more generally, we might be given merely the invariant subspace 
(R(£) which they span. This subspace and its complement (R(P) 
"reduce" A in the sense that we may decompose 

A = (E, Ê)( ° \(E, Ê)* = EAQE* + ÊAXÊ* 

where the nXn Hermitian matrix A0 = £ *AE has the same spectrum 
as -4's restriction to (R(E) while Ai^Ê *AÊ has the rest of A's spec
trum. Adding a Hermitian perturbation H to A changes its spectrum 
and invariant subspaces; let (R(P) be one of (A+H)'s invariant 
subspaces, identified perhaps by specifying an interval containing 
the spectrum of one of the matrices A 0 = P*(A +H)F or Ai 
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s= F*(A + H)F which figure in the decomposition A + H 
= FA0F*+FA1F*. 

How different is Gi(F) from 61(E)? This question will be answered 
in terms of hypotheses upon | | i î | | and upon a gap ô > 0 between the 
spectra of two of the Ai and At. Another similar question will be 
answered at the same time. 

5. Question 2—approximation. A Hermitian operator A+H is 
given together with orthonormal vectors 61, e2, • • • , en intended to 
approximate eigenvectors/i,/2 , • • • ,ƒ»; more generally, the subspace 
(R(E) spanned by the e's might be intended to approximate an in
variant subspace Gl(F) of A+H. Also given is a Hermitian nXn 
matrixzo, usually diagonal, intended toapproximate A0 = F*(A +H)F; 
more generally, Ao's spectrum approximates that part of (A+H)'s 
spectrum associated with (R(F). A residual R=(A+H)E —EA0 may 
be computed, and will be small when all approximations are close. 
Indeed, among (A +H)'s eigenvalues are n which may be paired with 
those of A 0 in such a way that no two in a pair differ by more than 
\\R\\i't this fact may help to characterize A0 and hence identify F, when 
A +H, E and A0 are all that are given. 

How different is (R(F) from (R(E)? This question will be answered 
in terms of hypotheses upon ||i?|| and upon a gap ô > 0 between the 
spectra of two of the Ai and A,-. Here Ao and Ao have already been 
defined, and Ai = F*(A+H)F as before. But Ai is not yet defined 
because the partition of A +H into a sum is partly arbitrary. Instead, 
to unify questions 1 and 2, we define as before A=EA0E*+EAiÊ*, 
now a function of Ai, and thus define the Hermitian perturbation 
H=(A+H)—A as a function of Ai satisfying HE = R. Some of our 
results are unaffected by the choice of A\. 

6. The main results. In each of the following theorems, those of 
the Ai, At-, H and R which appear are to be interpreted as above, 
subject to additional hypotheses varying from one theorem to the 
next. In all cases, © is the angle-operator between the invariant sub-
spaces (R(E) of A and (R(F) of A +Hy and 0O is as defined earlier. 
The norm inequalities are valid (and best-possible) for every unitary-
invariant norm. 

T H E sin 6 THEOREM. Assume that A0's spectrum lies in some interval 
while Ai's spectrum lies distant at least S > 0 from that interval (perhaps 
on both sides of it); or vice-versa. Then S||sin ®0|| ^||-R|| ^ | | # | | - And if 
the spectra ofA0 and A\ are separated in the same way, ô||sin ©|| ^ | | i ï | | . 

T H E sin 26 THEOREM. Assume that A0's spectrum lies in some interval 
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while Ai's spectrum lies distant at least 0>Ofrom that interval {perhaps 
on both sides of it) ; or vice-versa. Then S||sin 20o | | ^2| | i? | | and 8||sin 20| | 
^ 2|| H\\. (The last inequality is valid if, instead, the spectra of A o and A\ 
are separated as described above f or A0 and Ai.) And if 2||i£||i<5 or 
2| | i î | | i<ô, and if A0's spectrum lies no further than 8/2 from that inter
val containing AJ s spectrum, then 0O <?r/4 and 0 <TT/4 beside satisfying 
the inequalities above. 

The Rayleigh-Ritz method prescribes A 0 to be chosen in such a way 
that, given A+H and E, \\R\\ will be minimized; namely, Ao 
*=E*(A +H)E. For this choice, the theorems above can be sharpened. 

T H E tan 0 THEOREM. Assume AQ = E*(A~\-H)E, and assume there 
is a gap ô > 0 between two intervals of which one contains A0's spectrum 
and the other Ai's. Then ô||tan 0O|| ^ | | i ? | | and 5||tan ©|| g\\H\\. 

T H E tan 20 THEOREM. Assume A0 = 
and assume there is a gap 5 > 0 between two intervals of which one con
tains Ao's spectrum and the other Ais. Then ô||tan 2©0|| â2| |i£| | and 
ö||tan 2@|| ^2 | | J ï j | . Furthermore, A0 and Ai may be so chosen that their 
spectra are on the same sides of the gap as are A0's and Ai's respectively, 
and when this is done then @O<TT/4 and ©<7r/4 beside satisfying the 
inequalities above. 
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