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A subgroup A of the ^-primary group G is nice if pa(G/A) 
= {paG, A }/A for all ordinals a. We consider the following count-
ability condition: there exists a collection G of nice subgroups of G 
such that 

(0) oee. 
(1) 6 is closed with respect to group-theoretic union in G. 
(2) If A^e and if H is a subgroup of G such that {Af H}/A is 

countable, there exists i ? £ G such that 5 2 {-4, H\ and such that 
B/A is countable. 

The author [ l ] has referred to this condition as the third axiom 
of countability and has demonstrated that this is the countability 
condition—not the first axiom (countability) nor the second axiom 
(decomposition into a direct sum of countable groups)—which is 
truly relevant for the proof of Ulm's theorem. 

In this note, we outline a short proof of 

THEOREM. Suppose that G is a p-primary group presented by an 
arbitrary number of generators Xi ( i £ I ) and relations Rm(m(E:M). If 
each relation Rm involves at most two generators, then G satisfies the 
third axiom of countability. 

PROOF. There is, of course, no loss of generality in assuming that the 
index sets i* and M both contain an element denoted by 0 and that 
the relation R0 is: #o = 0. By adding repeatedly, if necessary, new 
generators yt subject to defining relations of the form pXi = yiy we 
may assume that for each i^O in I that there exists a relation Rm of 
the form pXi = Xj. Since each element of G has order equal to a power 
of p, we may in fact assume that given any generator XIT^XQ having 
order pn in G that there exists a finite chain xi, x2, Xz, • • •, xn+i = x0 of 
generators such that pXi = Xi+i is one of the given relations. Further­
more, by deleting certain redundancies in both generators and rela­
tions we may assume, in the end, that each relation Rmy m^O, is 
precisely of the form pXi = Xj where ij^j. For a quick verification of 
this, note that if 

(1) rxi — sxj where i^j and (r, £) = 1 
1 The author acknowledges NSF support under Grant GP-8833. 
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then Xi = tXj for some integer t and that the generator Xi is redundant 
for the presentation of G—with relations involving at most two 
generators. Having removed the redundancy (1) from the presenta­
tion of G, we observe that each relation Rmi w ^ O , is implied by the 
given relations of the form pXi=Xj, ij^j, and #o = 0. Consider the 
relation 

where r and 5 are integers. This relation is equivalent to, in the pres­
ence of the relations pXi = Xj and x0 = 0, a relation of the form 

Rm- qx\ = tXp where (q, p) = 1; 

even if r = 0, rxi = lxo. The denial of (1) implies that A=M> SO the 
relation Rn gives, beyond the information already given by the rela­
tions pXi = Xj and x0 = 0, information only about the order of some 
generator X\. However, the order of each generator Xi is already de­
termined by the relations pXi = Xj and x0 = 0. 

We have shown that G can be presented by generators Xi (*G J) and 
relations of the form pXi~Xj, i^j, and x0 = 0 such that 

(i) if ij^O is in ƒ, there exists jÇzI such that pXi = x3- is a relation; 
(ii) there is no redundancy of the form (1). 

The proof of the theorem is clearly finished by the following lemma— 
G has plenty of nice subgroups. 

LEMMA. Suppose that the primary group G is presented by generators 
Xi(iÇzI) and relations as described above. Let JQI and let H be the sub­
group of G generated by the generators #,-, j £ / . Then H is a nice sub-
group of G. 

PROOF. Define inductively for each ordinal a a subset /« of / in 
the following way: Io = I, 

Ia+i = [i G / : pocj = Xi for somej G I a] 
and 

Ip = d Ia if £ is a limit ordinal. 

I t is easy to prove inductively that paG= {#»}»-era. In order to 
show that H is a nice subgroup of G, we need to prove pa(G/H) 
= {paG, H}/H for all a. This, too, is an inductive argument and the 
nonlimit case is trivial. Suppose that j3 is a limit and assume that 
p«(G/H) = {paG, H}/H for all <*</?. Let x+HEp^G/H). We may 
assume that iÇEJ if pXi = Xj where JÇE.J. Write 

x - ]C U*i + HI t&k, where (tif p) = 1 
je J k€K 
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and K is disjoint from J . By the induction hypothesis, for each a< /3 , 
there exists ha = ^jej s?Xj in H such that x+haÇ:PaG = {xi}ieia. 
Thus 

je J keK iela 

Since (4, />) = 1 for each &£i£, it follows immediately from the 
limited substitution, pXi = Xj, one can make on generators that 
kÇzIa for each kÇzK. Hence kÇzIp = fta<p la for each fe£i£. Defining 
xf^YlkGKtkXk1weha.veth^txfEiPfiGsLndx+H = xf+HE{p0GtH}/H. 
This verifies that i l is nice in G. 

In connection with our result, the reader's attention is called to 
[2] ; the connection should be obvious. 
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