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1. Much of the classical theory of algebraic curves is summarized
by saying there is a map C(n)—J from the n-fold symmetric product
of the curve C into an abelian variety J, the Jacobian, and the fibers
are projective spaces (representing the linear systems of degree #).
For algebraic surfaces there is an analogous map V(#)—A from the
n-fold symmetric product of the surface V to its Albanese variety.
The fibers are irreducible and regular if # is large, but it has been a
long open question whether they are rational, or ever can be.

THEOREM. Let V be a complete nonsingular surface in characteristic
zero, and let g denote the dimension of its Albanese variety A. If for some
n>q the general fiber of the morphism V(n)—A is a rational variety,
then V is a ruled surface.

By the “general” fiber we mean as usual that there is an open set
in 4 over which all fibers have the indicated property. If V is ruled,
i.e., birationally equivalent to the product P*X C of a projective line
and a curve C, then the general fiber is rational for all #: for this con-
verse to the theorem, one needs only the quoted result for curves plus
the remark that then the Albanese variety of V is just the Jacobian
of C. A proof of the theorem when ¢=0 was the subject of an earlier
paper [2], some of whose ideas recur here. There is also overlap with
a recent (independent) proof by Mumford [3] that the rational
equivalence ring is not of finite type; both proofs use the idea of
bounding the dimension of the zero-locus of a 2-form.

2. A generic smoothness lemma. We need the

LEMMA. Let f: X—Y be a dominating morphism of varieties in char-
acteristic zero, with X nonsingular and projective. Then f has maximal
rank along the general fiber F,, so F, is nonsingular.

ProoF. The lemma is local on ¥; by Noether normalization we may
reduce to the case where Y is affine r-space, with coordinate functions
X1, * -+, % As a; varies over the (algebraically closed) ground field,
the zeros of x1—a; on X give a linear system of divisors on X; by
Bertini's theorem, a general member—say X;—is a disjoint union of

! Research supported in part by the National Science Foundation.
776



RULED SURFACES AND THE ALBANESE MAPPING 771

nonsingular varieties; each has multiplicity one and no embedded
components. In the same way the zeros of x,—a; on X; give a linear
system on X; whose general member is nonsingular, etc. Continuing,
we see that there exist fibers f~!(a) along which f is of maximal rank.
This then follows for the general fiber since f being of maximal rank
is an open condition on Y: it is clearly open on X and f is proper.

For the proof of our theorem, we may replace the singular variety
V(n) by a canonical desingularization, the Hilbert scheme H(%). This
is [1] a nonsingular 2#-dimensional projective variety with a bira-
tional morphism #%,: H(n)—V(n). This gives a corresponding mor-
phism H(n)—A, whose general fiber is pure (2% —g)-dimensional by
dimension theory, and it is easily seen that %, is an isomorphism on an
open subset of each component of the general fiber. Thus our hypoth-
eses together with the lemma imply that

(1) For some n>gq, the general fiber of H(n)—A is a nonsingular
rational variety.

3. Differential forms of weight . Let X be an #z-dimensional
variety, with function field K =%(X), and let E? be the K-space of
p-forms on X; then the (my, - - -, m,)-forms are the elements of
Em® - .. QE™;if all m;=m, they are called the m-forms of weight
r. These forms are holomorphic at pEX if the coefficients are holo-
morphic when the form is written in terms of dx, « « -, dx,., where
the x; are local parameters at p. Thus if X is also complete, the num-
ber of independent global holomorphic (m,, - - -, m,)-forms is given
by hm:...mr =dim H(X, Q™® - - - @Q™), where Q* is the sheaf of
holomorphic k-forms. If m;=n for all 7, h* - --» is traditionally written
P.(X), and called the rth plurigenus of X. These are all birational
invariants for X complete nonsingular, for

(2) If f: X—Y is a dominating, separable, rational map of complete
nonsingular varieties, then h™: . (X) Zp™: .. .om(Y),

The reasoning is classical. If @ is a holomorphic form on Y, then
f*a is a form of the same type on X which is nonzero (separability);
holomorphic outside a locus of codimension=2 (the fundamental
locus), therefore holomorphic everywhere (nonsingularity of X).

ProrosiTiON. If X is a nonsingular rational (or unirational) variety,
then k™ ...m(X) =0 for all (my, - - -, m,)5%(0, + - -, 0).

Proor. It suffices to prove this when X is projective n-space, by
(2). Let xq, - - -, x» be projective coordinates, and g: 4 — (0)—X the
usual map of affine (#n+1)-space minus the origin onto projective
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space. If a is a holomorphic form on X, then g*a is holomorphic on
A —(0), therefore on A4 since cod (0) =2. Written in terms of x;, its
coefficients are thus polynomials; since it is invariant under the
automorphisms of 4 defined by x;—cx;, we get all m;=0.

4. Proof of the theorem. By a well-known result (see e.g. [4]),if V
is a complete nonsingular surface in characteristic zero, then V is
ruled if and only if P,(V) =0 for all »>0. So we prove:

(3) If for some r, V carries a nonzero holomorphic 2-form ¢ of weight
r, then the general fiber of H(n)—A is not rational.

Let V[n] be the n-fold product; given such a ¢, then
“) e=¢1+ -+ ¢ ¢ =pre

is a holomorphic 2-form of weight # on V[n]; since it is invariant
under the symmetric group S,, it is the lifting of a form on V(n),
and this in turn may be carried over to H(n). We use the same letter
® for any of these forms. If we grant that ® is holomorphic on H(n)—
this will be proved later—then the restriction ®7 of ® to a (nonsingu-
lar) general fiber F of H(n)—A gives a holomorphic 2-form of weight
ron F. If F were rational, then ®r=0 by the proposition. But if we
pull things back to V[z], this contradicts

(5) If n>gq, the restriction of ® to the general fiber of V[n]—A4 is
nol zero.

ProOF OF (5). Let p=(p1, - - -, p») be a general point of V[xn],
F the fiber through it, T, r the tangent space to F at p. We say

(6) 0:: Ty, r—Ty,v is onto for all © (a;=d(pri] F)).

Namely, let S; be the closure of the set of ¢& V[n] which are either
singular points of the fiber F; through them or else where ¢; is not
onto, i.e., has rank =1. Since dim T, r=2n—g¢>n, this space can-
not be mapped to a 1-dimensional space by each of the » maps o;.
Say ¢y has rank 2; introducing coordinates, we see that rank o;=2
in a neighborhood of p. Thus p€.S;, so S; is a proper closed set. It
follows by symmetry that S; is a proper closed set, and therefore
p&S; for any 4, which is the assertion (6).

From (6) it follows that for each ¢, we can choose vectors £;, £/ in
T,,r whose images under o; are independent. Taking general linear
combinations of the ¢; and of the ¢!, we conclude

(7) There are vectors t, t' in Tp,r such that o;(t) and o;(t') are inde-
pendent for all 1.
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We now prove (5). Choose x and y to be local parameters at each
point p;; thus ¢ =g(dxdy) [ ®r where g(p;) =a;7#0 since p; is a general
point of V. By (7), (dxdy, (¢:(), 0:(t'))) =b:5%0. On the space Tpv(a,
by (4) the form® = > a.(dx.dy;) | ®r If ® were 0 when restricted to the
subspace T'p,r, then for ¢, & E Ty, 7,

(q): (e) 5’1 4 tl’ SR A t’)> = E ai<dxidyi! (ey e,)>b:'—1 = 0.

Our hypothesis is that dim T, > #n. If we put in #+1 linearly inde-
pendent vectors for ¢/, we get from the above #z4-1 independent linear
equations in 2% variables (the coefficients of e), having at least n+1
independent solution vectors e, a contradiction.

We still must show @ is holomorphic on H(z). Let X be the nor-
malization of H(z) in the function field of V[#]. Then the symmetric
group S, acts as automorphisms of X and H(zn) is the quotient
X/S,. Since ® is holomorphic on V[z], when viewed as a differential
®’ on the normal and birationally equivalent variety X, it will have
no poles. Therefore on H(n), its trace trx;gm®’ will also have no
poles; but (1/n!) tr &' =®.
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