RULED SURFACES AND THE ALBANESE MAPPING

BY ARTHUR MATTUCK1

Communicated March 17, 1969

1. Much of the classical theory of algebraic curves is summarized by saying there is a map $C(n) \rightarrow J$ from the n-fold symmetric product of the curve C into an abelian variety J, the Jacobian, and the fibers are projective spaces (representing the linear systems of degree n). For algebraic surfaces there is an analogous map $V(n) \rightarrow A$ from the n-fold symmetric product of the surface V to its Albanese variety. The fibers are irreducible and regular if n is large, but it has been a long open question whether they are rational, or ever can be.

THEOREM. Let V be a complete nonsingular surface in characteristic zero, and let q denote the dimension of its Albanese variety A. If for some n>q the general fiber of the morphism $V(n)\rightarrow A$ is a rational variety, then V is a ruled surface.

By the "general" fiber we mean as usual that there is an open set in A over which all fibers have the indicated property. If V is ruled, i.e., birationally equivalent to the product $P^1 \times C$ of a projective line and a curve C, then the general fiber is rational for all n: for this converse to the theorem, one needs only the quoted result for curves plus the remark that then the Albanese variety of V is just the Jacobian of C. A proof of the theorem when q=0 was the subject of an earlier paper [2], some of whose ideas recur here. There is also overlap with a recent (independent) proof by Mumford [3] that the rational equivalence ring is not of finite type; both proofs use the idea of bounding the dimension of the zero-locus of a 2-form.

2. A generic smoothness lemma. We need the

LEMMA. Let $f: X \rightarrow Y$ be a dominating morphism of varieties in characteristic zero, with X nonsingular and projective. Then f has maximal rank along the general fiber F_y , so F_y is nonsingular.

PROOF. The lemma is local on Y; by Noether normalization we may reduce to the case where Y is affine r-space, with coordinate functions x_1, \dots, x_r . As a_1 varies over the (algebraically closed) ground field, the zeros of x_1-a_1 on X give a linear system of divisors on X; by Bertini's theorem, a general member—say X_1 —is a disjoint union of

¹ Research supported in part by the National Science Foundation.

nonsingular varieties; each has multiplicity one and no embedded components. In the same way the zeros of x_2-a_2 on X_1 give a linear system on X_1 whose general member is nonsingular, etc. Continuing, we see that there exist fibers $f^{-1}(a)$ along which f is of maximal rank. This then follows for the general fiber since f being of maximal rank is an open condition on Y: it is clearly open on X and f is proper.

For the proof of our theorem, we may replace the singular variety V(n) by a canonical desingularization, the Hilbert scheme H(n). This is [1] a nonsingular 2n-dimensional projective variety with a birational morphism $h_n \colon H(n) \to V(n)$. This gives a corresponding morphism $H(n) \to A$, whose general fiber is pure (2n-q)-dimensional by dimension theory, and it is easily seen that h_n is an isomorphism on an open subset of each component of the general fiber. Thus our hypotheses together with the lemma imply that

- (1) For some n>q, the general fiber of $H(n)\rightarrow A$ is a nonsingular rational variety.
- 3. Differential forms of weight r. Let X be an n-dimensional variety, with function field K = k(X), and let E^p be the K-space of p-forms on X; then the (m_1, \dots, m_r) -forms are the elements of $E^{m_1} \otimes \dots \otimes E^{m_r}$; if all $m_i = m$, they are called the m-forms of weight r. These forms are holomorphic at $p \in X$ if the coefficients are holomorphic when the form is written in terms of dx_1, \dots, dx_n , where the x_i are local parameters at p. Thus if X is also complete, the number of independent global holomorphic (m_1, \dots, m_r) -forms is given by $h^{m_1, \dots, m_r} = \dim H^0(X, \Omega^{m_1} \otimes \dots \otimes \Omega^{m_r})$, where Ω^k is the sheaf of holomorphic k-forms. If $m_i = n$ for all i, h^{n_1, \dots, n_r} is traditionally written $P_r(X)$, and called the rth plurigenus of X. These are all birational invariants for X complete nonsingular, for
- (2) If $f: X \to Y$ is a dominating, separable, rational map of complete nonsingular varieties, then $h^{m_1} \cdots {}^{m_r}(X) \ge h^{m_1} \cdots {}^{m_r}(Y)$.

The reasoning is classical. If α is a holomorphic form on Y, then $f^*\alpha$ is a form of the same type on X which is nonzero (separability); holomorphic outside a locus of codimension ≥ 2 (the fundamental locus), therefore holomorphic everywhere (nonsingularity of X).

PROPOSITION. If X is a nonsingular rational (or unirational) variety, then $h^{m_1, \dots, m_r}(X) = 0$ for all $(m_1, \dots, m_r) \neq (0, \dots, 0)$.

PROOF. It suffices to prove this when X is projective n-space, by (2). Let x_0, \dots, x_n be projective coordinates, and $g: A-(0) \to X$ the usual map of affine (n+1)-space minus the origin onto projective

space. If α is a holomorphic form on X, then $g^*\alpha$ is holomorphic on A-(0), therefore on A since $\operatorname{cod}(0) \geq 2$. Written in terms of x_i , its coefficients are thus polynomials; since it is invariant under the automorphisms of A defined by $x_i \rightarrow cx_i$, we get all $m_i = 0$.

- 4. Proof of the theorem. By a well-known result (see e.g. [4]), if V is a complete nonsingular surface in characteristic zero, then V is ruled if and only if $P_r(V) = 0$ for all r > 0. So we prove:
- (3) If for some r, V carries a nonzero holomorphic 2-form ϕ of weight r, then the general fiber of $H(n) \rightarrow A$ is not rational.

Let V[n] be the *n*-fold product; given such a ϕ , then

(4)
$$\Phi = \phi_1 + \cdots + \phi_n, \quad \phi_i = \operatorname{pr}_i^* \phi$$

is a holomorphic 2-form of weight r on V[n]; since it is invariant under the symmetric group S_n , it is the lifting of a form on V(n), and this in turn may be carried over to H(n). We use the same letter Φ for any of these forms. If we grant that Φ is holomorphic on H(n)—this will be proved later—then the restriction Φ_F of Φ to a (nonsingular) general fiber F of $H(n) \rightarrow A$ gives a holomorphic 2-form of weight r on F. If F were rational, then $\Phi_F = 0$ by the proposition. But if we pull things back to V[n], this contradicts

(5) If n > q, the restriction of Φ to the general fiber of $V[n] \rightarrow A$ is not zero.

PROOF OF (5). Let $p = (p_1, \dots, p_n)$ be a general point of V[n], F the fiber through it, $T_{p,F}$ the tangent space to F at p. We say

(6)
$$\sigma_i: T_{p,F} \to T_{p_i,V}$$
 is onto for all i $(\sigma_i = d(pr_i | F))$.

Namely, let S_i be the closure of the set of $q \in V[n]$ which are either singular points of the fiber F_q through them or else where σ_i is not onto, i.e., has rank ≤ 1 . Since dim $T_{p,F} = 2n - q > n$, this space cannot be mapped to a 1-dimensional space by each of the n maps σ_i . Say σ_1 has rank 2; introducing coordinates, we see that rank $\sigma_1 = 2$ in a neighborhood of p. Thus $p \notin S_1$, so S_1 is a proper closed set. It follows by symmetry that S_i is a proper closed set, and therefore $p \notin S_i$ for any i, which is the assertion (6).

From (6) it follows that for each i, we can choose vectors t_i , t_i' in $T_{p,F}$ whose images under σ_i are independent. Taking general linear combinations of the t_i and of the t_i' , we conclude

(7) There are vectors t, t' in $T_{p,F}$ such that $\sigma_i(t)$ and $\sigma_i(t')$ are independent for all i.

We now prove (5). Choose x and y to be local parameters at each point p_i ; thus $\phi = g(dxdy)|_{\mathcal{F}}$, where $g(p_i) = a_i \neq 0$ since p_i is a general point of V. By (7), $\langle dxdy, (\sigma_i(t), \sigma_i(t')) \rangle = b_i \neq 0$. On the space $T_{p,V[n]}$, by (4) the form $\Phi = \sum a_i(dx_idy_i)|_{\mathcal{F}}$. If Φ were 0 when restricted to the subspace $T_{p,F}$, then for $e, e' \in T_{p,F}$,

$$\langle \Phi, (e, e', t, t', \dots, t, t') \rangle = \sum a_i \langle dx_i dy_i, (e, e') \rangle b_i^{r-1} = 0.$$

Our hypothesis is that dim $T_{p,F} > n$. If we put in n+1 linearly independent vectors for e', we get from the above n+1 independent linear equations in 2n variables (the coefficients of e), having at least n+1 independent solution vectors e, a contradiction.

We still must show Φ is holomorphic on H(n). Let X be the normalization of H(n) in the function field of V[n]. Then the symmetric group S_n acts as automorphisms of X and H(n) is the quotient X/S_n . Since Φ is holomorphic on V[n], when viewed as a differential Φ' on the normal and birationally equivalent variety X, it will have no poles. Therefore on H(n), its trace $\operatorname{tr}_{X|H(n)}\Phi'$ will also have no poles; but (1/n!) tr $\Phi' = \Phi$.

REFERENCES

- 1. J. Fogarty, Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968), 511-521.
- 2. A. Mattuck, On the symmetric product of a rational surface, Proc. Amer. Math. Soc. 21 (1969), 638-688.
- 3. D. Mumford, Rational equivalence of 0-cycles on surfaces, Kyoto J. Math. (to appear).
- 4. I. R. Šafarevič et al., Algebraic surfaces, Trudy Mat. Inst. Steklov. 75 (1965) = Proc. Steklov. Inst. Math. 75 (1965).

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139