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1. Much of the classical theory of algebraic curves is summarized 
by saying there is a map C(n)-+J from the «-fold symmetric product 
of the curve C into an abelian variety / , the Jacobian, and the fibers 
are projective spaces (representing the linear systems of degree n). 
For algebraic surfaces there is an analogous map V(n)-^>A from the 
«-fold symmetric product of the surface V to its Albanese variety. 
The fibers are irreducible and regular if n is large, but it has been a 
long open question whether they are rational, or ever can be. 

THEOREM. Let V be a complete nonsingular surface in characteristic 
zero, and let a denote the dimension of its Albanese variety A. If for some 
n>q the general fiber of the morphism V(n)—>A is a rational variety, 
then V is a ruled surface. 

By the "general" fiber we mean as usual that there is an open set 
in A over which all fibers have the indicated property. If V is ruled, 
i.e., birationally equivalent to the product P*X C of a projective line 
and a curve C, then the general fiber is rational for all n: for this con­
verse to the theorem, one needs only the quoted result for curves plus 
the remark that then the Albanese variety of V is just the Jacobian 
of C. A proof of the theorem when q = 0 was the subject of an earlier 
paper [2], some of whose ideas recur here. There is also overlap with 
a recent (independent) proof by Mumford [3] that the rational 
equivalence ring is not of finite type; both proofs use the idea of 
bounding the dimension of the zero-locus of a 2-form. 

2. A generic smoothness lemma. We need the 

LEMMA. Let f: X—>F be a dominating morphism of varieties in char-
acteristic zero, with X nonsingular and projective. Then f has maximal 
rank along the general fiber Fy, so Fy is nonsingular. 

PROOF. The lemma is local on Y; by Noether normalization we may 
reduce to the case where Y is affine r-space, with coordinate functions 
x\, • • • , xr. As ai varies over the (algebraically closed) ground field, 
the zeros of X\ — a\ on X give a linear system of divisors on X ; by 
Bertini's theorem, a general member—say Xi—is a disjoint union of 
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nonsingular varieties; each has multiplicity one and no embedded 
components. In the same way the zeros of x2 — a2 on Xi give a linear 
system on Xi whose general member is nonsingular, etc. Continuing, 
we see that there exist fibers f~l(a) along which ƒ is of maximal rank. 
This then follows for the general fiber since ƒ being of maximal rank 
is an open condition on Y: it is clearly open on X and ƒ is proper. 

For the proof of our theorem, we may replace the singular variety 
V(n) by a canonical desingularization, the Hubert scheme H(n). This 
is [ l ] a nonsingular 2w-dimensional projective variety with a bira­
tional morphism hn: H(n)—>V(n). This gives a corresponding mor-
phism H(n)-+A, whose general fiber is pure (2n — q)-dimensional by 
dimension theory, and it is easily seen that hn is an isomorphism on an 
open subset of each component of the general fiber. Thus our hypoth­
eses together with the lemma imply that 

(1) For some n>q, the general fiber of H(n)—*A is a nonsingular 
rational variety. 

3. Differential forms of weight r. Let X be an w-dimensional 
variety, with function field K = k(X), and let Ep be the X-space of 
£-forms on X; then the (mi, • • • , mr)-forms are the elements of 
Em® • • • ®Emr; if all mi = m, they are called the m-forms of weight 
r. These forms are holomorphic at pGX if the coefficients are holo­
morphic when the form is written in terms of dx\, • • • , dxn, where 
the Xi are local parameters a t p. Thus if X is also complete, the num­
ber of independent global holomorphic (mi, • • • , mr)-forms is given 
by hmi ^ = dim H°(X, Qmi® • • • ®Qmr), where Ü* is the sheaf of 
holomorphic fe-forms. If m< = n for all i, hn w is traditionally written 
Pr(X), and called the rth plurigenus of X. These are all birational 
invariants for X complete nonsingular, for 

(2) Iff: X-+Y is a dominating, separable, rational map of complete 
nonsingular varieties, then hmi' • • ••mr(X) è h m Wlr(F). 

The reasoning is classical. If a is a holomorphic form on Y, then 
ƒ*a is a form of the same type on X which is nonzero (separability) ; 
holomorphic outside a locus of codimension è 2 (the fundamental 
locus), therefore holomorphic everywhere (nonsingularity of X). 

PROPOSITION. If X is a nonsingular rational (or unirational) variety, 
then hm* ^(X)=0 for all (mlt • - • , m r ) ^ ( 0 , • • • , 0). 

PROOF. I t suffices to prove this when X is projective w-space, by 
(2). Let Xo, • • • , xn be projective coordinates, and g:A — (0)—>X the 
usual map of affine (w-fl)-space minus the origin onto projective 
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space. If a is a holomorphic form on X, then g*a is holomorphic on 
.4—(0), therefore on A since cod ( 0 ) ^ 2 . Written in terms of #»-, its 
coefficients are thus polynomials; since it is invariant under the 
automorphisms of A defined by x%—>CX{, we get all ra» = 0. 

4. Proof of the theorem. By a well-known result (see e.g. [4]), if V 
is a complete nonsingular surface in characteristic zero, then V is 
ruled if and only if Pr(V) = 0 for all r > 0 . So we prove: 

(3) If for some r, V carries a nonzero holomorphic 2-form <j> of weight 
r, then the general fiber of H(n)—*A is not rational. 

Let V[n] be the n-îold product; given such a <j>, then 

(4) 3> = <t>i + * * • + *», 4>i = pr<*0 

is a holomorphic 2-form of weight r on V[n]\ since it is invariant 
under the symmetric group 5 n , it is the lifting of a form on V(n), 
and this in turn may be carried over to H(n). We use the same letter 
* for any of these forms. If we grant that ^ is holomorphic on H(n)— 
this will be proved later—then the restriction $F of $ to a (nonsingu­
lar) general fiber F of H(n)—*A gives a holomorphic 2-form of weight 
r on F. If F were rational, then <5F = 0 by the proposition. But if we 
pull things back to V[n], this contradicts 

(5) If n>qy the restriction of <& to the general fiber of V\n\—>A is 
not zero. 

PROOF OF (5). Let p = (piy • • • , pn) be a general point of V[n], 
F the fiber through it, TPtF the tangent space to F a t p. We say 

(6) ori'Tp,F—>TPi,v is onto for all i (<Ti = d(pri\ F)). 

Namely, let 5» be the closure of the set of g G V[n] which are either 
singular points of the fiber Fq through them or else where &i is not 
onto, i.e., has rank ^ 1 . Since dim TPtF

:=2n — q>n, this space can­
not be mapped to a 1-dimensional space by each of the n maps or*-. 
Say <T\ has rank 2 ; introducing coordinates, we see that rank <T\ = 2 
in a neighborhood of p. Thus p(3pSi, so Si is a proper closed set. I t 
follows by symmetry that Si is a proper closed set, and therefore 
p(£Si for any i, which is the assertion (6). 

From (6) it follows that for each i, we can choose vectors tit // in 
TPtF whose images under o%- are independent. Taking general linear 
combinations of the /»• and of the / / , we conclude 

(7) There are vectors t, tf in TP,F such that o\(£) and <Ti(t') are inde­
pendent for all i. 
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We now prove (5). Choose x and y to be local parameters a t each 
point pi] thus <f> = g(dxdy) | 0 r , where g(pi) =ai9£0 since pi is a general 
point of V. By (7), (dxdy, (o\(0, <Ti(tf))) = bi7^0. On the space TPtv[n], 
by (4) the form<ï> = ^di(dxidyi) |<8>r. If $ were 0 when restricted to the 
subspace TPtF, then for e, e'ÇETPtFy 

<$, (e, e', t,f9- • • , /, 0> = Z ai{dxidyi, (e, e')^ = 0. 

Our hypothesis is that dim TPtF>n. If we put in w + 1 linearly inde­
pendent vectors for e', we get from the above n+1 independent linear 
equations in 2n variables (the coefficients of e), having at least n+1 
independent solution vectors e, a contradiction. 

We still must show $ is holomorphic on H(n). Let X be the nor­
malization of H(n) in the function field of V[n]. Then the symmetric 
group Sn acts as automorphisms of X and H(n) is the quotient 
X/Sn. Since * is holomorphic on V[n], when viewed as a differential 
<ï>' on the normal and birationally equivalent variety X, it will have 
no poles. Therefore on H(n), its trace trx\H(n)$' will also have no 
poles; but (l/n\) t r * / = * . 
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