BOUNDARY VALUE PROBLEMS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS

BY ROBERT FENNELL¹ AND PAUL WALTMAN²

Communicated by Wolfgang Wasow, October 21, 1968

Let E^n denote Euclidean n space with norm $|\cdot|$ and let C_h denote the space of continuous E^n valued functions on [a-h, a], h>0, with uniform norm $||\cdot||$. For a function x(t) on [a-h, b] and $t \in [a, b]$ let x_t denote the function on [a-h, a] whose value at θ is $x(t+\theta-a)$. Let $f(t, \Psi)$ be a mapping from $[a, b] \times C_h$ into E^n and let M and N be linear operators from C_h to C_h . In this paper we consider special cases of the boundary value problem

$$(1) y' = f(t, y_t),$$

$$(2) My_a + Ny_b = 0, b > a + h.$$

This is a nonlinear version of a problem posed by Cooke [1]. Other boundary value problems for functional differential equations have been studied recently by Grimm and Schmitt [3], Halanay [4], and Kato [6].

We treat the problem for bounded f and a restricted class of operators by initial value methods, that is, we seek to find an initial function $q \in C_h$ such that a solution of the initial value problem (1) and

$$(3) y(t) = q(t), a - h \le t \le a$$

satisfies the boundary condition (2). Some functions $f(t, y_t)$, not bounded, can be treated by approximation techniques and some non-homogeneous boundary conditions can also be considered.

THEOREM 1. Let $f(t, \Psi)$ be a continuous bounded function from $[a, b] \times C_h$ into E^n and let M and N be $n \times n$ matrices such that M + N is nonsingular. If $||(M+N)^{-1}N|| < 1$, then there exists a solution of (1) and (2).

METHOD OF PROOF. We give a brief sketch of the method of proof of Theorem 1. The proofs of the other theorems are similar. Assume first that solutions of the initial value problem are unique. Let $T: C_h \rightarrow C_h$ be defined as follows: for $q \in C_h$, let $Tq = x_b(q)$, that is, Tq is the segment at b of the solution of the initial value problem with

¹ Research of this author supported by a NASA Traineeship.

² Research of this author supported by Project Themis.

initial data q. Let

$$S(\alpha, L) = \{q \mid q \in C_h, ||q|| \leq \alpha, |q(\theta_1) - q(\theta_2)| \leq L |\theta_1 - \theta_2|, \theta_1, \theta_2 \in [a - h, a]\}.$$

The operator

$$F(q) = [I - (M + N)^{-1}(M + NT)]q$$

= - (M + N)^{-1}N(T - I)q

is shown to have a fixed point $q^* \in S(\alpha, L)$ for an appropriate choice of α and L. The solution of the initial value problem with initial data q^* , satisfies the boundary condition (2). An approximation argument, essentially that of Kato [6], is then used to remove the uniqueness assumption.

In case the matrix M is invertible the boundary condition (2) can be written

$$y_a + Py_b = 0.$$

If ||P|| < 1, then I+P is nonsingular [2, p. 62] but it is not necessarily the case that $||(I+P)^{-1}P|| < 1$. The following theorem covers this case.

THEOREM 2. Let $f(t, \Psi)$ be a continuous bounded function from $[a, b] \times C_h$ into E^n and let P be an $n \times n$ matrix. If ||P|| < 1, then the boundary value problem (1) (4) has a solution.

In the preceding theorems, the desired initial function was selected from a compact set $S(\alpha, L)$. We can replace the matrix P in Theorem 2 by a linear operator but we no longer can select the initial condition from a predetermined compact set and thereby lose the approximation argument which allowed the assumption of unique solutions of the initial value problem (1) (3) to be avoided.

THEOREM 3. Let $f(t, \Psi)$ be a continuous bounded function from $[a, b] \times C_h$ into E_n and let P be a continuous linear operator from C_h into C_h with ||P|| < 1. Suppose solutions of the initial value problem are unique. Then there exists a solution of (1) (4).

THEOREM 4. Let the hypotheses of Theorem 3 hold with the boundedness assumption on $f(t, \Psi)$ replaced by a Lipschitz condition. If $e^{L(b-a)}(b-a) < (1-||P||)/L||P||$, there exists a unique solution of (1) (4).

Details will appear elsewhere.

REFERENCES

- 1. K. L. Cooke, Some recent work on functional-differential equations, Proc. U. S.—Japan Seminar on Differential and Functional Equations (Minneapolis, Minn.), Benjamin, New York, 1967, pp. 27-47.
- 2. V. N. Faddeeva, Computational methods of linear algebra, Dover, New York, 1959.
- 3. L. S. Grimm and K. Schmitt, Boundary value problems for delay-differential equations, Bull. Amer. Math. Soc. 74 (1968), 997-1000.
- 4. A. Halanay, On a boundary value problem for linear systems with a time lag, J. Differential Equations 2 (1966), 47-56.
- 5. ——, Differential equations stability, oscillations, and time lags, Academic Press, New York, 1966.
- 6. J. Kato, Asymptotic behavior in functional differential equations, Tohoku Math. J. 18 (1966), 174-215.

University of Iowa, Iowa City, Iowa 52240