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1. Statement of the results and some corollaries. All semigroups 
considered are of finite order. In the recent paper [3] and in the re­
cent book [2] the complexity of a semigroup was defined and defini­
tive results were obtained for determining the complexity of a semi­
group which was the union of groups. Herein we state generalizations, 
valid for arbitrary finite semigroups, of those previous results. All 
undefined notation is explained in [2 ]. 

We first recall the definition of complexity. See also [2] or [3]. 
One semigroup, Si, is said to divide another semigroup, 52, if and only 
if Si is a homomorphic image of a subsemigroup S S S2. If 5 is a semi­
group, Endo(S) denotes the semigroup of endomorphisms of S under 
composition. If Si and 52 are semigroups and F is a homomorphism 
of Si into Endo(52), the semidirect product of 52 by Si with connecting 
homomorphism F, denoted by S2XrSi, is the semigroup with ele­
ments S2XS1 and product defined by (s2, si) • (si, s{ ) = (52- Y(si)(si), 
Si'Si). 

We can construct new semigroups from old ones by taking semi-
direct products and then divisors. 5nXrn_x • • • Xrs&XiySi denotes 
( • • • ( S n X r ^ S n - O X r ^ S n - O • • * X^S i ) where Fw-2 is a homo­
morphism of Sn_2 into Endo(5nXrn_15w-i) , etc. We say 5 is a com­
binatorial semigroup if and only if the subsemigroups of S which are 
groups are singletons. The main theorem of [ l] (see also [2, Chapters]) 
implies that for each semigroup S there exist semigroups 5W, • • • , Si 
and connecting homomorphisms Fw-i, • • • , Fi so that 

(1.1) S divides Sn Xr , - ! • • • X F ^ I 

and Sk is either a simple nontrivial group dividing 5 or Sk is a com­
binatorial semigroup, for fc = l, • • - , n. 

#<?(5)> the (group) complexity of 5, is by definition the smallest 
nonnegative integer n such that 
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S divides Cn X r . - A X ^ - A - i Xyn_2Gn~i X*n_2 • • • 
(1.2) 

Ci Xr0Gi Xz0Co 

with Cn, • • • , Ci, Co combinatorial semigroups and Cw, • • • , G\ 
nontrivial groups. For extensive background see [2], 

Let SJP denote the collection of all finite semigroups, S the collection 
of all finite semigroups which are union of groups and N the non-
negative integers. Then #<?: SF~*N. In [3] and [2, Chapter 9] , it was 
proved that §Q restricted to S satisfies the following axioms: 

AXIOM L # G ( 5 ) = max {#6(5<):î = î, • • - , n } i f 5 ^ ^ 5 i X • • • XSn 

where ^ ^ denotes subdirect product. See [2]. 
AXIOM I I . (FUNDAMENTAL LEMMA OF COMPLEXITY). Let J be a com­

binatorial ideal of 5. Then 

(1.3) #g(S) = MS/I). Also #o({0}) = 0. 

AXIOM I I I . Let S^ {o} and let 5 be a group mapping (GM) semi­
group with RLM the right letter mapping homomorphic image of 
S.» Then 

(1.4) MS) = #G(RLM(5)) + 1. 

We ask which Axioms remain valid for #<?: Ŝ —>N? 
I t is trivial to verify that Axiom I remains valid for S^. I t is easy 

to see that Axiom III is false for SF, e.g. the symmetric inverse semi­
group on n letters has complexity 1. See [7]. In fact, no function from 
%F into N satisfies all three Axioms. In [2, Corollary 9.3.4], Axiom II 
is proved to be equivalent to Axiom II ' . 

AXIOM I I ' . Let the epimorphism 0: S—»T be one-to-one when 
restricted to each subgroup of 5. Then #0(S)*=#Q(T). 

The epimorphisms of the hypothesis of Axiom I I ' are called 7-epi-
morphisms in [2]. Our main result is the following theorem. 

THEOREM. Axiom II , or equivalently, Axiom I I ' holds for all finite 
semigroups. 

I t is well known (see [2, Proposition 8.2.17(b)]) that if S is a GM 
semigroup then either # 0 (5) equals #Ö(RLM(5)) + 1 or # 0 (RLM(S)) . 
We say S is a pure group mapping (PGM) semigroup if and only if 5 
is a GM semigroup ^ { 0 } and (1.4) holds for 5. 

3 5 is a GM semigroup iff S has a 0-minimal noncombinatorial ideal I so that S 
acts faithfully on I by right multiplication and also by left multiplication. RLM (S) is 
the action made faithful of S by right multiplication on the principal left ideals of I. 
See [2]. 
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COROLLARY 1. # G ( 5 ) equals the largest nonnegative integer w = #i(5) 
such that there exists a series 

S ->-> PGMi -*-* RLM(PGMi) ->-> • • • 
(1.5) 

->-» PGMn -+-> RLM(PGMn) 

where —>—> denotes epimorphism, and PGMA denotes a PGM semigroup 
5*{0} for k = l, • • • , ». 

PROOF. First #X(S) ^ # G ( S ) follows by the definition of PGM. The 
reverse inequality #<?(£) é#i (S) follows from [2, Lemma 8.2.19(b)], 
Axiom II and the definition of PGM. See the proof of [2, Theorem 
9.2.5]. 

COROLLARY 2. 

S£ - » T4 implies #G(T) ^ fGÇS) £ #G(T) + 1. 

PROOF. 5—>—>Tg the minimal <£' homomorphic image of S equals 
S->-»SR L M by [2, Fact 8.3.9(c)]. Now apply Corollary 1. 

COROLLARY 3. (CONTINUITY OF COMPLEXITY WITH RESPECT TO 

HOMOMORPHISMS) Let 0: S-+-+T be an epimorphism, and let #<?(5) =w 
and #o(T)=k. Then there exists epimorphisms 5 = S„—»—»Sn-i 
—»—» . . . _*—>5fc — j ^ 5Ö /feaj ^# composite epimorphism is 0, awrf 
fo(Sj)^jforj = kt • • • , n. 

PROOF. Apply [2, Theorem 8.1.14], the Theorem and Corollary 2. 

COROLLARY 4. # G ( 5 ) equals the maximum of the #<?(5') wAeré S' 
ranges over the <t>{S) where <t> is an irreducible representation of S into 
nXn complex matrices. 

PROOF. The direct sum of the 0's give a y-epimorphism by [ó]. 

2. Indication of the proof. Complete details will appear in [4]. 
Unfortunately they are long and messy. However, we will try to make 
the philosophy of the proof clear by the following discussion. 

Suppose for each semigroup S we can construct another semigroup 
a(S) such that 

(2.1) a(S)-+->S 

and if J is a combinatorial ideal of S then 

4 0:5—>—>r is an £ (resp. £') epimorphism iff si, s2£S (and si, s2 regular elements) 
and 0i(£i)-»0i(st) implies S*$i •* Sls«. See [2]. 
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a(S) divides C w a[(S/I)] or at least 

c(«cs)) £ (c, i) e c(«(s/i)).« 
Then clearly to prove the Theorem it suffices to prove 

(*) C(a(S)) g (C, 1) 0 C(5) 

or equivalently by (2.1) 

(*) C(a(S)) « C(5) 

where C ( 5 ) « C ( r ) iff C(S)^(C, 1)®C(T) and C ( r ) ^ ( C , 1)0C(S) . 
EXAMPLES OF ce. Before continuing we list some good examples of a. 

With reference to [2, §5.4], we suppose that for each S we choose a 
system of subsemigroups Sw, • • • , Si and we let a(S) be the subsemi­
group of 

(Si (SnW w • • • w (S[, (Sl)~) 

generated by {$: s(ES} defined in the proof of Lemma 5.4.4 of [2]. 
Clearly (2.1) holds. 

(2.3) If S is a union of groups and the system is chosen to be the 
^-classes of S as in Remark 5.4.14 of [2], then a(S) satisfies (2.2), 
as can be verified. See [3] or Chapter 9 of [2]. 

(2.4) If J is a combinatorial ideal of 5, then the system Sn, • • • , Si 
can be chosen so that either SiC\I^=0 or Si is combinatorial and 
contains / . In this case (2.2) can be verified. See [4] for complete 
details. 

Yet another way to construct a 's is the following. 
(2.5) Consider the right regular representation (5 J , S) and apply 

the method of Zeiger (see [9] and Chapter 4 of [2]). Let a(S) be the 
subsemigroup of the wreath product of permutation-reset mapping 
semigroups so obtained which maps homomorphically onto 5. Thus 
(2.1) holds and (2.2) can be verified. See [4] for complete details. 

Now we give a method by which (*) can be proved. We first note 
that if S is a union of groups and a is given by (2.3), then (*) can be 
verified by brute force using the machine method of [ l ] . For the 
details see [3] or Chapter 9 of [2]. The general case seems difficult 
by direct methods and we proceed indirectly as follows. 

* S2W Si denotes the wreath product of the right regular representation of Si by 
S2, i.e., S2 w 5 i= (52

J, S2) I (Si1, Si). Let « = #(S) be as denned just before (2.10). 
Then by definition C(S) » (C, »), resp. (G, n)t resp. (C\/Gt n) if S satisfies (2.10) (b) 
and not (2.10) (a), resp. S satisfies (2.10) (a) and not (2.10(b), resp. S satisfies both 
(2.10)(a) and (b). By definition, (C, 1)0 (C, w) = (C, l ) e (CVG, w) = (C, 1)0 (G, 
n — 1) = (C, n). Finally, by definition (a, v)Sifi,j) iff v^j, or v**j and a=0, or v**j 
and a=CVG. See [2]. 
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Suppose one can show 

(2.6), (2.6)' (ENLARGING LEMMA). If C(S)~C(T) and S divides T 
(resp. T-+—+S) and (*) holds for T, then (*) holds for S. 

(2.7) Let 0: S<-+-+T be a Y(3C)-epimorphism.6 Then a(S) divides 
Cwa(T) with C combinatorial or at least 

C(a(S)) S (C, 1) 0 C(a(T)). 

(2.8), (2.8)'Supposed: 5—»—»rand0isan <£ (resp. £') epimorphism. 
Then a(S) divides G w G w C2wa(T) or at least C(a(S))^(Cy 3) 
®C(a(T)). 

Then 

LEMMA (2.9). (2.1), (2.6)-(2.8) or (2.1), (2.6)', (2.7) and (2.8)' 
imply (*). 

PROOF. Suppose (2.9) is false and let S be a counter-example whose 
complexity number (defined next) #(S) —n is as small as possible. By 
the definition of complexity number #(5) either 

(2.10) (a) S divides Gn w Cn-i w Gn_2 w Cn-2 w • • • = W 

or 

(2.10)(b) S divides Cn w G„_i w Cn-2 w Gw-2 w • • • = W 

where G/s are groups and the CVs are combinatorial monoids and for 
no smaller n is (2.10) (a) or (b) true. But C(S) « C(W) so (2.6) implies 
(*) is false for W. But in Case (2.10) (b) 

(2.11)(b) W » IF-i - p-i(W) 
7(3C) 

where £_i is the projection onto the first n—1 coordinates. In case 
(2.10) (a) 

(2.11) (a) W-»W-!** p-i(W) 

and in either case #(W_i) =#(W r)~-l = # ( S ) - 1 . Thus by induction 
(*) holds for W-i and we have 

(2.12)(a) C(W-i) = (C,n- 1) 

(2.12)(b) C(W^) = (G, n - 1) 

respectively. But then (2.11), (2.12) and (2.7) and (2.8) implies (*) 
holds for W, a contradiction. The other case with (2.6)', etc. proceeds 
similarly. This proves (2.9). 

6 0 restricted to eachtfC-class of 5 is one-to-one. 
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SKETCH OF THE PROOF OF THE THEOREM. Using a of (2.4) which we 
denote by a* we verify (2.1) and (2.2) and further show that 

a*(S)—+* S. 
7(3C) 

We do not verify (2.6)-(2.8) directly for a* of (2.4). 
Then using a of (2.5) which we denote by Z, we verify (2.1) but not 

(2.2) for Z because I can contain large nonregular 5C-classes of S. 
However, we can verify (2.6), (2.7) and (2.8) for Z by using the classi­
fication of maximal proper epimorphisms proved in [S]. Then Lemma 
(2.9) implies (*) for Z(S). Then (*) for Z and (2.7) implies 

C(S) « C(T) if S » T. 
7(3C) 

But from the first paragraph 

a*(S) » S 
Y(3C) 

so (*) holds for a*, so (2.1), (2.2) and (*) holds for a* and the Theo­
rem follows. 

For further results on complexity see [7]. 
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