REGULAR NEIGHBORHOODS ARE NOT TOPOLOGICALLY INVARIANT

BY MITSUYOSHI KATO

Communicated by W. Browder, May 1, 1968

In [5], Siebenmann and Sondow have shown that there exist topologically equivalent PL(n+3, n+1)-sphere pairs for $n \ge 2$ that are combinatorially distinct. In this note, combining their analysis of strong h-cobordisms of certain higher dimensional knots and isoneighboring theorem due to Noguchi [3] and [4], we show the following:

THEOREM. Assume $n = even \ge 2$. Then there exist infinitely many combinatorially distinct PL(n+3, n+1)-manifold pairs (V_k, K_k) , $k = 1, 2, \cdots$, that are not abstract regular neighborhoods but topologically equivalent to an abstract regular neighborhood (V_0, K_0) .

REMARK. Each submanifold K_k is a PL(n+1)-sphere which is 1-flat in V_k with only one singularity. (For 1-flat embeddings and singularities, see [3].)

An implication of the Theorem is that regular neighborhoods are not topologically invariant. More explicitly we may say:

COROLLARY. The collapsing is not topologically invariant.

We note here that (V_k, K_k) and (V_0, K_0) have the vanishing Whitehead torsion, since K_0 is simply connected. However, in the subsequent paper [2], we shall show that the topological invariance of Whitehead torsions is equivalent to that of regular neighborhoods of polyhedra in the sufficiently high-dimensional euclidean space.

- 1. The construction. In the following, we shall use the notations in [5]. However, we shall be concerned mainly with the combinatorial (or PL) objects. By a PL n-knot we shall mean a PL(n+2, n)-sphere pair (S^{n+2}, L^n) such that L^n has a collar neighborhood $(L^n \times D^2)$ in S^{n+2} [1] and [4].
- LEMMA 1. Assume $n = even \ge 2$. Then there exist infinitely many invertible strong h-cobordisms of PL n-knots
 - $c_k = ((W_k, M_k); (S_0, L_0), (S_k, L_k)), k = 1, 2, \cdots, such that$
 - (1) (S_k, L_k) and (S_0, L_0) are combinatorially equivalent,
- (2) $\pi_1(S_0-L_0)\cong J\times G$, where J and G are the infinite cyclic group and the binary icosahedral group, respectively, and

(3) $\tau(c_k) = 2k\tau$ for $k = 1, 2, \dots$, where τ is an element of Wh $(J \times G)$ of infinite order such that when $k \neq j$, there exists no automorphism θ of $\pi_1(S_0 - L_0)$ making $\theta * \tau(c_k) = \tau(c_j)$.

The proof of Lemma 1 is essentially given in [5]. In particular, it is to be noted that the argument in Construction 2.5 of [5] is valid for $n = \text{even} \ge 2$.

In the subsequent, we shall employ the notations in Lemma 1 and assume $n = \text{even} \ge 2$. First, we form a PL(n+3, n+1)-manifold pair $(V_0, K_0) = a*(S_0, L_0) \cup_{f_0} (D^{n+1} \times D^2, D^{n+1} \times (0))$ from the cone ball pair $a*(S_0, L_0) (= (a*S_0, a*L_0))$ by attaching the standard ball pair $(D^{n+1} \times D^2, D^{n+1} \times (0))$ by a PL homeomorphism

$$f_0: (bD^{n+1} \times D^2, bD^{n+1} \times (0)) \to ((L_0 \times D^2), L_0) \subset (S_0, L_0),$$

where bD^{n+1} stands for the boundary of the (n+1)-ball D^{n+1} . Then (V_0, K_0) is clearly an abstract regular neighborhood and K_0 is 1-flat in V_0 with only one singularity (S_0, L_0) at a.

In the same way, we have a PL(n+3, n+1)-manifold pair $(V_k, K_k) = a*(S_0, L_0) \cup (W_k, M_k) \cup_{f_k} (D^{n+1} \times D^2, D^{n+1} \times (0))$ for each $k \ge 1$, where $f_k: (bD^{n+1} \times D^2, bD^{n+1} \times (0)) \rightarrow ((L_k \times D^2), L_k) \subset (S_k, L_k)$ is a PL homeomorphism.

2. Distinguishing the pairs combinatorially. Let U_k be a regular neighborhood of K_k in V_k such that $U_k \subset \text{Int } V_k$ for each $k \ge 0$. Since K_k is a 1-flat (n+1)-sphere in U_k with only one singularity (S_0, L_0) at a for each $k \ge 0$, it follows from the Theorem in [4] that (U_k, K_k) is combinatorially equivalent to (V_0, K_0) . Thus we proved:

ASSERTION 1. For each $k \ge 0$, the abstract regular neighborhoods (U_k, K_k) and (V_0, K_0) are combinatorially equivalent.

Putting $N_k = V_k - \text{Int } U_k$, we examine a PL manifold triad $(N_k; bU_k, bV_k)$. From Assertion 1, we may identify (U_k, K_k) with (V_0, K_0) . Note that $bV_0 = E_0 \cup_{f'_0} D^{n+1} \times bD^2$ and hence that $\pi_1(E_0) \cong \pi_1(bV_0)$, where $E_0 = S_0 - (L_0 \times \text{Int } D^2)$ and $f_0' = f_0 \mid bD^{n+1} \times bD^2$.

Observe that from the construction of the h-cobordism c_k , V_k is obtained from V_0 by attaching an h-cobordism from $b V_0$ with the torsion $2k\tau$. Here we identify $\operatorname{Wh}(\pi_1(b V_0))$ with $\operatorname{Wh}(\pi_1(E_0))$ by the isomorphism $\pi_1(E_0) \cong \pi_1(b V_0)$. In particular, by the regular neighborhood annulus theorem $(N_0; b U_0, b V_0)$ is a product cobordism. Therefore, we may conclude the following:

ASSERTION 2. For each $k \ge 0$, the triad $(N_k; bU_k, bV_k)$ is a PL h-cobordism with $\tau(N_k, bU_k) = 2k\tau$, where the torsion is identified by the isomorphism $\pi_1(E_0) \cong \pi_1(bV_0) \cong \pi_1(bU_0)$.

Now we are ready to prove the following:

PROPOSITION 1. The manifold pairs (V_k, K_k) , $k = 1, 2, \cdots$, are not abstract regular neighborhoods. If $k \neq j$, then (V_k, K_k) and (V_j, K_j) are combinatorially distinct for $k \geq 0$ and $j \geq 0$.

PROOF. First, suppose that (V_k, K_k) is an abstract regular neighborhood for some $k \ge 1$. Then it follows that by the uniqueness of regular neighborhoods (V_k, K_k) and (U_k, K_k) are combinatorially equivalent. Hence, from Assertion 1, (V_k, K_k) and (V_0, K_0) are combinatorially equivalent. Thus, in order to prove the first statement of Proposition 1, it suffices to show the second statement. To do this, suppose that there exists a PL homeomorphism $g: (V_k, K_k) \rightarrow (V_j, K_j)$ for some $k \ge 0$ and $j \ge 0$ such that $k \ne j$. Then by the uniqueness of regular neighborhoods we may assume that $g(U_k) = U_j$ and hence that $g(N_k) = N_j$. Thus the k-cobordisms $(N_k; bU_k, bV_k)$ and $(N_j; bU_j, bV_j)$ are combinatorially equivalent. It follows from the combinatorial invariance theorem of Whitehead torsions that $g'_*(2k\tau) = 2j\tau$, where $g' = g \mid bU_k : bU_k \rightarrow bU_j$. This contradicts Lemma 1, (3), completing the proof.

3. Finding homeomorphisms. Form (W_k', M_k') from (W_k, M_k) by attaching a collar $(S_0, L_0) \times [0, 1)$ naturally at the left end (S_0, L_0) . Then, from the invertibility of the knot cobordisms we may prove the following by the infinite repetition argument:

LEMMA 2. For any $k \ge 1$, (W_k', M_k') is PL homeomorphic to $(S_k, L_k) \times [0, 1)$. (For the proof, see Lemma 3.1 in [5].)

From Lemma 2 and the cone extension argument, we have:

COROLLARY TO LEMMA 2. Any homeomorphism $h: (S_k, L_k) \rightarrow (S_0, L_0)$ between the boundaries of $a*(S_0, L_0) \cup (W_k, M_k)$ and $a*(S_0, L_0)$ is extendable to a homeomorphism $g: a*(S_0, L_0) \cup (W_k, M_k) \rightarrow a*(S_0, L_0)$.

PROPOSITION 2. For any $k \ge 1$, there is a homeomorphism $H: (V_k, K_k) \rightarrow (V_0, K_0)$.

PROOF. Let $h: (S_k, L_k) \to (S_0, L_0)$ be a PL homeomorphism between the boundaries of $a*(S_0, L_0) \cup (W_k, M_k)$ and $a*(S_0, L_0)$. Then from the uniqueness of regular neighborhoods we may assume that

$$hf_k(bD^{n+1} \times D^2, bD^{n+1} \times (0)) = f_0(bD^{n+1} \times D^2, bD^{n+1} \times (0)).$$

It follows from Theorem C in [1] that

$$f_0^{-1}hf_k: (bD^{n+1} \times D^2, bD^{n+1} \times (0)) \to (bD^{n+1} \times D^2, bD^{n+1} \times (0))$$

is extendable to a PL homeomorphism

$$g: (D^{n+1} \times D^2, D^{n+1} \times (0)) \to (D^{n+1} \times D^2, D^{n+1} \times (0)).$$

Combining this fact and the Corollary to Lemma 2, we conclude that the PL homeomorphism $h: (S_k, L_k) \rightarrow (S_0, L_0)$ is extendable to the required homeomorphism $H: (V_k, K_k) \rightarrow (V_0, K_0)$, completing the proof.

Now Propositions 1 and 2 complete the proof of Theorem.

REFERENCES

- 1. M. Kato, A concordance classification of PL homeomorphisms of $S^p \times S^q$, Topology (to appear).
 - 2. ——, Geometrical operations of Whitehead groups (to appear).
 - 3. H. Noguchi, 1-flat 3-manifolds in 5-space. Osaka J. Math. 1 (1964), 117-125.
- 4. —, One-flat submanifolds with codimension two, Illinois J. Math. (to appear).
- 5. L. Siebenmann and J. Sondow, Some homeomorphic sphere pairs that are combinatorially distinct, Comment. Math. Helv. 41 (1966-67), 261-272.

Tokyo Metropolitan University, Tokyo, Japan