VECTOR VALUED MULTIPLIERS AND APPLICATIONS

BY N. M. RIVIÈRE1

Communicated by Gian-Carlo Rota, May 6, 1968

Let
$$x = (x_1, \dots, x_n) \in \mathbb{R}^n$$
; $\xi = (\xi_1, \dots, \xi_m) \in \mathbb{R}^m$. We define

$$\Xi^{p}X^{2} = \left\{ f; f : R^{n+m} \to C, \text{ such that} \right.$$

$$\Xi^{p}X^{2}(f) = \left\{ \int_{R^{m}} \left[\int_{R^{n}} |f(x,\xi)|^{2} dx \right]^{p/2} d\xi \right\}^{1/p} < \infty \right\}.$$

We shall call $C_0^{\infty}(R^{n+m})$ the class of infinitely differentiable functions in R^{n+m} with compact support. For $f \in \Xi^1 X^1$ define the Fourier transform of f by

$$\mathfrak{F}(f)(y,\eta) = \int_{\mathbb{R}^{n+m}} \exp(2\pi i(x \circ y + \xi \circ \eta)) f(x,\xi) dx d\xi,$$

where $x \circ y = \sum_{j=1}^{n} x_j y_j$.

Similarly we define the anti-Fourier transform

$$\mathfrak{F}^{-1}(f)(y,\eta) = \int_{\mathbb{R}^{n+m}} \exp(-2\pi i (x \circ y + \xi \circ \eta)) f(x,\xi) dx d\xi.$$

We shall denote by $\chi_E(x, \xi)$ the characteristic function of the set E. Finally for $f \in C_0^{\infty}(\mathbb{R}^{n+m})$ and $g(x, \xi)$ bounded we define

$$T(f) = \mathfrak{F}^{-1}(g\mathfrak{F}(f)).$$

THEOREM 1 (LITTLEWOOD-PALEY). Let $\Lambda = (\lambda_1(x), \dots, \lambda_m(x))$ denote an m-vector of real valued functions. For the multi-index $N = (n_1, \dots, n_m)(n_s = \pm 1, \pm 2, \dots)$ define

$$Q_N = \left\{ (x, \xi); 2^{n_0} \leq \mid \xi_s - \lambda_s(x) \mid \leq 2^{n_0+1}; 1 \leq s \leq m \right\}.$$

Consider $f \in \Xi^p X^2$, and set $f_N = \mathfrak{F}^{-1}(X_{Q_N} \mathfrak{F}(f))$. Then

$$B_{p}^{-m}\Xi^{p}X^{2}\left(\left\{\sum_{N}\left|f_{N}\right|^{2}\right\}^{1/2}\right) \leq \Xi^{p}X^{2}(f)$$

$$\leq B_{p}^{m}\Xi^{p}X^{2}\left(\left\{\sum_{N}\left|f_{N}\right|^{2}\right\}^{1/2}\right), \text{ for all } p, 1$$

 $(B_p \text{ depends on } p \text{ only}).$

¹ Research partially supported by NSF GP 7041X.

THEOREM 2. Let Q_N be as in Theorem 1 and assume $g(x, \xi)$ is a bounded measurable function such that

$$\frac{\partial^m}{\partial \xi_1 \cdots \partial \xi_m} (\chi_{Q_N} g) = \mu_N(x, \xi) \quad \text{is a finite measure.}$$

(The last equality is to be understood in the sense of distributions.) Then for $f \in C_0^{\infty}(\mathbb{R}^{n+m})$ and for $T(f) = \mathfrak{F}^{-1}(g\mathfrak{F}(g))$ we have

$$\mathbb{E}^{p}X^{2}(Tf) \leq B_{p}^{m} \left[\sup_{N} \left\{ \sup_{x \in R_{n}} \int_{R_{m}} d \mid \mu_{N}(x, \xi) \mid \right\} \right] \mathbb{E}^{p}X^{2}(f)$$

for all p, 1 .

As a consequence of Theorem 2 we obtain:

THEOREM 3. Let $\mathcal{L} = \{l_1, \dots, l_r\}$ be a finite family of affine functionals from \mathbb{R}^m into \mathbb{R} , and assume $S \subset \mathbb{R}^{n+m}$ has the property that

$$S \cap \{(x_0, \xi), x_0 \text{ fixed}\} = \{\xi; l_j(\xi) \ge \lambda_j(x_0); 1 \le j \le r\}.$$

Set $g(x, \xi) = \chi_s(x, \xi)$. Then

$$\Xi^{p}X^{2}(Tf) \leq B_{p}^{rm}\Xi^{p}X^{2}(f).$$

In particular if m=1 and $S \subset \mathbb{R}^{n+1}$ is a finite union of disjoint convex sets (say k sets) then

$$\Xi^p X^2(Tf) \leq B_p k \Xi^p X^2(f); \text{ for all } p, 1$$

REMARK 1. The result of Theorem 3 is the best possible of its kind. More explicitly, if $S = \{(x, \xi); x \in \mathbb{R}^n, \xi \in \mathbb{R}; \text{ such that } |x|^2 + \xi^2 \leq 1\}$ and $T(f) = \mathfrak{F}^{-1}(\chi_{\bullet}\mathfrak{F}(f))$ is a bounded operator from $\Xi^p X_1^{q_1} \cdot \cdot \cdot \cdot X_n^{q_n}$ into itself for all p, $1 ; then <math>q_1 = q_2 = \cdot \cdot \cdot = q_n = 2$. This result is essentially known and due to C. S. Herz [2, p. 996], who shows that T is not a bounded operator from $L^p(\mathbb{R}^{n+1})$ into itself when $p \leq 2(n+1)/(n+2)$ or $p \geq 2(n+1)/n$. The proof can be extended to show the above result (see also Theorem 5).

Another application of Theorem 2 is the following theorem

THEOREM 4. Let $P(x, \xi)$ and $Q(x, \xi)$ be two polynomials in the ξ -variable $(x \in \mathbb{R}^n, \xi \in \mathbb{R})$ of degrees m_1 and m_2 respectively. Assume that $g(x, \xi) = P(x, \xi)/Q(x, \xi)$ is a bounded measurable function.

$$\Xi^p X^2(Tf) \leq B_p(m_1 + m_2)\Xi^p X^2(f)$$
 for all p , $1 .$

REMARK 2. As in the case of Theorem 3, the result of Theorem 4 is the best possible of its kind. In [3] W. Littman, C. McCarthy and the author prove that $g(x, \xi) = (|x|^2 - \xi + i)^{-1}$ is not a multiplier in $L^p(R^{n+1})$ for either p < 2(n+1)/(n+2) or p > 2(n+1)/n; once again the main estimate of the proof actually shows that the conclusion of Remark 1 is equally valid here (see also Theorem 5).

Using some basic results of the Riesz theory of interpolation for spaces of mixed norm (see [1]), it is possible to extend the results of Theorems 3 and 4.

Given two Banach spaces B_0 and B_1 , we shall denote by $[B_0, B_1]_{\alpha}$ $(0 \le \alpha \le 1)$ the α -intermediate space of the Riesz interpolation having for end points B_0 and B_1 .

Set

$$B_1^{(p)} = X_1^p X_2^p \cdots X_n^p,$$

and

$$B_{j+1}^{(p)} = [B_j^{(p)}, X_{j+1}^p X_1^2 \cdots X_n^2]_{j/(j+1)}.$$

THEOREM 5. Let $g(x, \xi)$ be either the characteristic function of a finite union of convex sets (as in Theorem 3) $(x \in \mathbb{R}^n, \xi \in \mathbb{R})$ or the bounded ratio of two polynomials in all variables (as in Theorem 4). Then

(i)
$$||T(f)||_{B_{n+1}}^{(p)} \le B_p ||f||_{L_q(\mathbb{R}^{n+1})}$$
 for $1 ,$

where (n+1)/q = 1/p + n/2 $(2n/(n+2) < q \le 2)$.

(ii)
$$||T(f)||_{L_q(\mathbb{R}^{n+1})} \le B_p ||f||_{B_{n+1}}$$
 for $2 \le p < \infty$,

and q as before $(2 \le q < 2(n+1)/n)$.

The constant B_p depends on p and T as in Theorems 3 and 4. The proofs of these results will appear elsewhere.

REFERENCES

- 1. A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190.
- 2. C. S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. 40 (1954), 996-999.
- 3. W. Littman, C. McCarthy, N. M. Rivière, The non-existence of L^p-estimates for certain translation-invariant operators, Studia Math. 30 (1968).

University of Minnesota