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We are interested in general hyperbolic systems of the form 

(1) ut + f(u, v)x = 0, vt + g(u, v), = 0 

with initial data 

(2) (v(0, x), u(0, x)) = (v0(%), U0(X)). 

The vector U= (v, u) is a function of / and x> t^O, — oo < # < oo, and 
the functions/and g are C2 functions of two real variables. We assume 
that the system (1) is hyperbolic in some open set 01 in the v-u plane, 
with fvgu>0. Let DF(U) and D2F(U) denote respectively the first 
and second Fréchet derivatives (see [2]) of the vector function 
F= (f, g) : Ol-»i?2; and let rj(U)J = li 2, be the eigenvectors olDF(U), 
with orthogonal vectors lj(U)1 j= 1, 2: k(U)rj(U) = 0 for i^j. 

THEOREM 1. Let the system (1) be hyperbolic in an open set % in the 
v-u plane. Then (a) the system (1) is genuinely nonlinear in the jth 
characteristic field at UÇz'U (see Lax [ô]) if and only if 

liiW&FiWMü), r,{U)] * 0; 

(b) the system (1) satisfies the Glimm-Lax shock interaction condition 
(condition (c) of [4]) in % provided that left eigenvectors lj(U) can be 
chosen so that 

h(U)D2F(U)[rk(U), rk(U)] > 0, j , k = 1, 2, j * k, U G 01. 

The Glimm-Lax shock interaction condition states that the interac­
tion of two shocks of one family produces a shock of the same family 
and a rarefaction wave of the opposite family. Moreover, for suffi­
ciently weak shocks, we are able to prove an analogous theorem for 
nXn systems of conservation laws, w^2, which locally admit Rie-
mann invariants. The proof of it uses some ideas in [3]. 

We assume that the system (1) is genuinely nonlinear in 01, and we 
normalize rj by D\j(U) [rj(U)]>0, i = l, 2, where Xy=Xy(C/) is the 
eigenvalue asociated with r$, \%>\\. We then normalize lj by / /y>0, 
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.7 = 1, 2. Our additional assumption on the system (1) is that 
lj(U)D*F(U)[rk(U),rk(U)]>0, j , A = l , 2 , UEV. 

We define2 a shock wave of the ith characteristic field i = 1, 2, to be 
a discontinuity x — x(t) satisfying the Rankine-Hugoniot condition 
and the inequality 

\i(U(x + 0, 0) < *(0 < X<(tf (* - 0, 0). 

THEOREM 2. Far eacA / w # / P 0 = (vo, «o) ^ % /Aer^ e#is/ too smooth 
curves through P 0 , w=s(fl; P0) #wd U=W(V; P 0) , £a/fed /Ae sAtfcA and 
wave curves respectively, defined in % globally, which consist of states 
that can be connected to P 0 by a shock wave of the second characteristic 
field, and a rarefaction wave of the first characteristic field, respectively. 

For each P 0 = (v0, u0) in <ll, we require that 

(3) a(v, u; V0, uo) > \i(v0, UQ) 

for all (v, u) G °\l with u = s(v ; P 0) , where a{v, u ; v0, u0) is the correspond­
ing shock speed. This requirement is satisfied for example, if any of 
the following conditions hold in ^ i 

(a) X2 = 0 = Xi, 
(b) d\i/du^0, 
(c) fuv è 0 and fuu S 0 or gvu = 0 and gvv = 0. 
Fix a point P 0 = (v0, u0) in the v-u plane and let 

C(P0) = {(v9u) G Ol-.v = Î>0,S(Ï>;PO) ^ ^ W(D;PO)}. 

These regions C(P) then satisfy the following order condition. 

THEOREM 3. If PiGC(Po), /Ac» C(Pi)CC(P 0) . 

To prove this theorem, we first consider the case where P i = (vi, u\) 
lies on the shock curve starting at P 0 ; i.e., P i satisfies Ui~s(vi; P 0 ) . 
If u2 = s(z>2; Pi) is any point on the shock curve from Pi, then we shall 
show that fa, w2) is not on the shock curve from P 0 ; i.e., we shall show 
that u^s^; Po). Suppose that this is not the case and let 0*01, 0*02, 
(Ti2 be the corresponding shock speeds. Then 

<7oi(Pi - Po) = P(Pi) - P(Po), 

<ri2(P2 - Pi) = P(P2) - P(Pi), 

<ro2(P2 ~ Po) - P(P2) - P(Po). 

Adding the first two equations and comparing with the third shows 
that 

2 Note that this definition differs slightly from the definition in [ô]. 
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(roi(Pi~Po) + (r i2(P2-Pi)-cro2(P2-Po) = (ro2(P2~Pi) + cro2(Pi-Po). 

If the vectors P i—P 0 and P2—Pi were not collinear, we would have 
^01 = ^02=0-12 in contradiction to the shock condition o*oi>X2(Pi) >öri2. 
Hence we conclude that these vectors are collinear so that 

(ui — u0)/(vi — v0) = (u2 — WI)/(ZJ2 — *>i) = (u2 — u0)/(v2 — vo). 

But this too is impossible since we can easily show that the derivative 
of (u—UQ)/(V—VO) along the shock curve u = s(v\ P0) is positive; i.e., 
that the shock curve is convex. (We remark that this part of the 
theorem is proved without using condition (3), and shows that in 01, 
the interaction of two shocks of the same family produces a shock of 
the same family plus a rarefaction wave of the opposite family.) 
For the general case, we first show that the theorem holds if and only 
if for each P i = (^i, w(v\\ P0)) with vi>v^ u=s(v; Pi) implies 
u^s(v; Po); i.e., the theorem holds if and only if for every point P i 
on the wave curve through P 0 , the shock curve starting at P i does 
not go below the shock curve starting at P 0 . We then show that condi­
tion (3) implies (actually is equivalent to) this latter condition. We 
remark that Theorem 3 holds if instead of assuming condition (3), 
we have a uniqueness theorem for Riemann problems in C(Po). Hence 
the theorem will hold, for example, if instead of condition (3), the 
conditions for uniqueness of "decay of a discontinuity" as described 
in [7] are satisfied in 01. Thus (3) is a necessary condition if (1) has a 
unique solution to the Cauchy problem. 

In order to prove a global existence theorem for the problem (1), 
(2), we assume that the initial data satisfies a certain order condition 
which we now describe. Suppose that the "curve" u=u0(x)t v=Vo(x), 
— oo <x< oo, is bounded and contained in 01. Our order condition 
states that if we let (v{f Ui), i = l, 2 be two points on this curve cor­
responding to the points Xi, i = l, 2 respectively, where #i<#2, then 
the Riemann problem for (1) with initial data 

(v0(x), UQ(X)) = (vh Ui), x < 0, 

= (v2, u2)9 x> 0, 

is resolved in 01 by a 2-shock and a 1-rarefaction wave. Under these 
hypotheses we can prove 

THEOREM 4. The Cauchy problem (1), (2) has a global solution con­
tained in 01. 

(Similar theorems can be proved in the case where the data is re­
solved in 01 by a 1-shock and a 2-rarefaction wave.) 
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Theorems 2, 3 and 4 are extensions of similar theorems found in [5] 
and [s] where the cases /w=g„ = 0 and/ M ==&,== gWM==0 respectively, 
are considered, and % is the half-space v>0. We prove these theorems 
by extending and simplifying the methods in [5]. In the proof of the­
orem 4, we find a solution of (1), (2) as a limit of a sequence of solu­
tions of (1) with step data. We show that these approximating solu­
tions are uniformly bounded and have uniformly bounded variation 
locally in the sense of Tonelli-Cesari, [ l ] , with respect to two inde­
pendent (not necessarily orthogonal) directions. I t then follows that 
this sequence is compact in the topology of ii-convergence on com­
pacta, and therefore a subsequence converges to a solution of the 
problem (1), (2). 

In addition to these theorems, we have proved existence theorems 
for the problems (1), (2) with the same hypotheses o n / , g and the 
initial data, using the difference scheme introduced by Glimm in [3J. 
Thus the Glimm scheme can be used to solve certain initial-value 
problems where the variation of the initial data is arbitrarily large. 

The complete proofs of these results will appear elsewhere. 
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