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In [3] the author proved 

THEOREM l.1 Iff is any entire function of lower order less than § and 
g is entire, then f (g) is periodic if and only if g is. 

By means of a result due to Edrei [ l ] and Ostrovskii [ô] it is pos­
sible to generalize Theorem 1 to a certain class of meromorphic func­
tions. We begin with 

LEMMA 1 (EDREI [ l ] , OSTROVSKII [6]). Letf(z) be meromorphic oj 
lower order X < | . If S(00, /)>l-cos7rX, then |/(re*0) | —»<*>, uniformly 
in 6 as rn—* 00 through a suitable sequence. 

Here ô is the Nevanlinna deficiency (see Hayman [5, p. 42]). 

THEOREM 2. Let f be meromorphic of lower order X and let g be entire. 
If 0 ^ X < J and f or some ay 5 (a, /)>1—-COSTTX, then f (g) is periodic if 
and only if g is. If r is a period off(g), then g has a period having the 
same argument as T. 

SKETCH OF PROOF. We assume that f(g) is periodic with period r 
having argument a. Let L be the half line re*a everywhere except near 
poles of f(g), where we let L loop around them with radius e, e a small 
positive number. Letting f*(z) = l/(f(z)— a) and applying Lemma 1 
we see that |f*(reid) | —» 00, uniformly in 0 as rn—> °° through a suitable 
sequence. From the hypotheses of the theorem it follows that f(g) is 
bounded on L. If g is bounded on L, then as in the proof of Theorem 1 
(see [3]) g must be periodic with a period having the same argument 
as r. If g is unbounded on L, then ƒ is bounded on g(L) and this leads 
to a contradiction via Lemma 1. 

COROLLARY. If P is a polynomial and f is as in Theorem 2, then f (P) 
is not periodic. 

This Corollary is a partial solution to the more general question 
suggested in [4]: If ƒ is meromorphic for which polynomials is f(P) 
periodic? 

1 N. Baker proved an analogue of this theorem for ƒ of order < l /2 . See On some 
results of A . Renyi and C. Renyi concerning periodic entire functions, Acta Sci. Math. 
(Szeged) 27 (1966), 197-200. 
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Theorem 2 also yields a generalization of an earlier result men­
tioned in [4]. 

THEOREM 3. Let ƒ be meromorphic and g entire. If f(g) is of finite 
order, has no deficient values and is periodic, with period r, then either f 
has no deficient values or g is periodic with a period having the same 
argument as r . 

SKETCH OF PROOF. By a theorem of Edrei and Fuchs [2 ] either ƒ 
is of zero order or g is a polynomial. In the latter case ƒ can certainly 
not have any deficient values since f(g) does not. In the former case 
one can apply Theorem 2 and arrive at the desired conclusion. 

COROLLARY (SEE [4]). Let ƒ be meromorphic and g entire. If f(g) 
is elliptic, then ƒ has no deficient values. 

This last corollary rules out the possibility of applying the earlier 
one to resolve the question mentioned in [4] : If P is a polynomial of 
degree n, where n — 5 or n ^ 7 and ƒ is any meromorphic function, then 
f(g) is not elliptic? 
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