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1. Introduction. Consider the two functional equations 

(1) Lu~Nu + p, 

(2) Lu = M u + q 

in a real Banach space B, where £ is a linear operator mapping a 
subset of B into B; M and N are operators (in general, nonlinear) 
mapping B into B ; p and q are fixed elements in B ; and the following 
inequality holds: 

(3) Nu + p^Mu + q for all u E B. 

Here " ^ " signifies a partial ordering induced by a cone KQB [3] of 
"positive" elements: 

u S v if and only if (v •— u) G K. 

In this paper we extend results obtained previously [2] for positive 
solutions (that is, solutions in K) of (1) and (2); here we consider 
solutions which are not necessarily in K. Specifically, under condition 
(3) and certain other assumptions, we establish below that the 
(unique) solution of (2) is an upper bound on all solutions of (1) (§2) ; 
and, under additional hypotheses on N, we construct the "maximal" 
solution for (1) (§3). Finally, we make some remarks about positive 
solutions (§4). 

Applications of these results to systems of nonlinear equations and 
nonlinear boundary value problems for ordinary differential equations 
can be found in [l], [2]. Related results in the case of (elliptic) partial 
differential equations have been obtained by Parter [4]. 

The result in §2 might be described as a generalization of the "gen­
eralized Bellman's Lemma" (see [S]) ; for it follows from (3) that any 
solution of (1) satisfies Lu^*Mu+q, and integral inequalities of this 
form are treated in [5]. 

We make the following assumptions once and for all: 
(Ai) L has a bounded inverse L~l which is defined on B and leaves 

the cone K invariant. 
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(A2) M is defined on B and is Lipschitz continuous with Lipschitz 
constant j3 satisfying 

(4) j8 | |H | < 1. 

2. Upper bound. By an application of the Banach fixed point the­
orem, condition (4) implies that the equation (2) has a unique solu­
tion <f> in B. We show now that all solutions of (1) (if any exist) are 
bounded above by 0. 

THEOREM 1. Let (Ax), (A2) and (3) hold. Let either N or M (or both) 
be monotonie on B : 

(5) u,v G B, u}£ v, imply Nu ^ Nv. 

If zÇzB is a solution of (1), then 

PROOF. Case 1. Let M be monotonie. For n~ 1, 2, • • • , set 

0n = L~\M<l>n-i + q)} 0o = z-

Then using (3) 

0O » z « L~l(N* + p) S lr\Mz + q) = L~l(M<t><> + q) = 0i. 

We have used here the fact that 

{(Mz + q) - (iVs + p)\ G # , therefore ^{(i lf* + q) - (2\T* + £)} 

is in J?. Now from (5) 

02 - 0! - Zr*(Jf *i - M0O) G # . 

Thus by induction 

Z ^ 01 ^ 02 É ' • • ^ 0n ^ • • • , 

that is, the sequence {(0»—2)} is in K. Since X is closed lim (0n—0) £i£. 
But 0n converges to the unique solution <f> of (2). Hence (<f>--z)(E:K. 

Case 2. Let N be monotonie. Again s^0i. Now from (3) and (5) 

02 - z - L- l[(lf#i + j) - (#0i + #) + (#0i + p) - (#0 + *)] G J8T. 

If we assume 

(0« - 2) G K, 

it follows similarly that 

(0n+i -z)EK. 
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Proceeding to the limit, we have (<f>—z) GJK". This completes the proof 
of Theorem 1. 

An analogous result may be found for a lower bound. Specifically, 
if the inequality (3) is reversed and all other hypotheses in Theorem 1 
remain the same, we conclude that <f> (the unique solution of (2)) is a 
lower bound for all solutions of (1). 

3. Maximal solution. We now make some additional assumptions 
on N, which will insure existence of at least one solution of (1) in B. 

(A3) N is defined on B, is completely continuous, and satisfies for 
all uGB 

(6) \\Nu\\ £r | |« | | +a 

and 

(7) v\\L~i < 1, 

where a and v are nonnegative constants. When (A8) holds, an appli­
cation of the Schauder fixed point theorem yields the existence of at 
least one solution of (1) in B. Specifically, set 

Un = Irl(Nun-l + p) U0 - lTlp. 

If we assume now that \\un — LrtyW £?i?, it follows from (6) and (7) 
that ||#»+i—L~lp\\ ^R whenever 

RZ\\L-i(4L-ij\\+a)/(l-Jl\L-*\\). 

Since N is completely continuous, {un} is compact. Therefore, there 
exists a subsequence converging to a solution of (1). 

DEFINITION. u(~B is said to be a maximal solution of (1) with 
respect to the ordering induced by K when 

(i) u is a solution of (1); and 
(ii) if z is any other solution, then z^u. 

THEOREM 2. Let (Ai), (A2), (A3) and (3) hold. Suppose N is mono-
tonic on B. Then there exists a maximal solution üfor (1), given by 

ü = lim un = Km Lrl(Nun-.x + p)} uo — <£, 

where <i> is the {unique) solution of (2) in B. 

PROOF. For w = l, 2, • • • , set 

un = Irl(Nun-i + p), uo = 4>. 

From (3) 

«o - «i - L^KMuo + J) - (Nuo + p)] E K, 



i968] BOUNDS AND SOLUTIONS FOR NONLINEAR EQUATIONS SIS 

and from the monotonicity of N 

U\ — U2 « L~~\Nub — Nui) G K. 

An induction on n shows that {un} is monotonie decreasing. If now 
we choose 

R * ||£-'|| {(F|M| + «) + \\L-*P - 4 }/(i - »ll JHI), 

it is easily seen that ||#n"-0|| ÛR implies ||w»+i — <̂ || ^R. Since N is 
completely continuous, {un} is compact. Therefore, there exists an 
element ü in B such that 

ü = lim #». 

Here we have used the fact that a compact monotonie sequence con­
verges [3, p. 40]. From the continuity of N it follows that ü is a solu­
tion of (1). 

We show now that ü is the maximal solution. Let z be any other 
solution of (1) in B. From Theorem 1 

2 ^ = «0, 

and from (5) 

ux - z = Irl(Nu0 - Nz) G K. 

By an induction on nt it follows that 

(un — z) G -K", for » =» 1, 2, • • • . 

Since X is closed 

(0 - z) G # . 

This completes the proof of Theorem 2. 
In a similar manner the existence of a minimal solution of (1) may 

be established when inequality (3) is reversed and in the preceding 
proof <t> is assumed to be a lower bound. 

4. Positive solutions. When M and N leave the cone K invariant, 
and p and q are in K, the results of §§2 and 3 yield the corresponding 
results for positive solutions (that is, solutions in K) of (1) [2]. For, 
let the assumptions (Ai) and (A2) hold, and let MKQK and qÇzK. 
Then it can be seen [l] that the (unique) solution 0 of (2) is in K. 
Likewise, setting 

un = Lr\Nun-i + p), UQ = Lrlp, n = 1, 2, • • • , 

if (Ai) and (A3) hold, NKQK and p€zK, all the iterates remain in K. 
Therefore, there exists at least one positive solution of (1). 
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Now, when the inequality (3) holds, in particular, for all w£2£, 
<j> will be an upper bound on all solutions of (1) in K. Similarly, as in 
Theorem 2, we can construct the maximal solution of (1) in K by 
starting the above iteration with <j>. 

The authors wish to express their appreciation to the members of 
the Seminar on Applied Functional Analysis at Rensselaer Poly­
technic Institute for their helpful comments. 
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