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In this note, we state some results on the cohomology of topological 
spaces that have been obtained by a study of the Eilenberg-Moore 
spectral sequence. Details and proofs will appear in [ l l ] . 

We consider either of the essentially equivalent diagrams: 

F = F E 

Figure 1 E —» F or Figure 2 X 

i l if 
xL B B 

In Figure 1, Y-+B is an acyclic fibration with fibre F and E—>X is 
the fibration induced by f: X—>B. In Figure 2, ƒ: X—>B is a Serre 
fibration with fibre E. We assume (in both cases) that B is pathwise 
connected and simply connected. Our results concern the cohomology 
of E. 

Let A be a commutative Noetherian ring. Cohomology will be 
taken with coefficients in A except where explicitly stated otherwise. 
We assume that H*(B) is A-flat and that H*(X) and H*(B) are of 
finite type as A-modules. Then there is a spectral sequence of dif­
ferential A-algebras {Er}, defined by Eilenberg and Moore [ó], 
which satisfies the conditions : 

(i) E2 = TorH*(B)(A, H*(X)), where H*(X) has the structure of left 
#*(£)-module determined by the m a p / * : H*(B)->H*(X), and 

(ii) {Er} converges to H*(E)t in the sense that E*, is isomorphic 
to the associated graded algebra E°H*(E) of H*(E) with respect to a 
suitable filtration. 

With these hypotheses and notations, we have the following result. 

THEOREM. Let H*(B) be a polynomial algebra, and let X be one of the 
following: 

(a) X = BG, where G is a compact connected Lie group such that 
H*(BG) is a polynomial algebra on even degree generators. 
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(b) X — BG, where G is (Z2)
g, or 0(w), or a compact connected Lie 

group such that H*(BG; Z2) is a polynomial algebra on n generators, 
where G contains a subgroup isomorphic to {Z2)

n~Zi@ • • # ©Z2. 
(c) X~ XiKfjCi, Hi), where each n^2 and each x»- is a finitely gen­

erated Abelian group subject only to the proviso that if ni~2, then Ti has 
no cyclic summands of the form Z2h, h>l. 

Then, in case (a), E^ — E* and therefore E°H*(E) is isomorphic to 
TorH*(B)(&, H*(X)). In cases (b) and (c), assume further that A=«Z2. 
Then £«, is effectively computable, up to any specified finite total degree, 

from knowledge off*: H*(B; Z2)->H*(X; Z2). 

The proofs in cases (b) and (c) will actually yield an algorithm for 
the computation of E°H*(E; Z2) in terms of/*; and we shall also 
obtain conditions on/* sufficient to guarantee that E%^EW. 

The hypotheses on G in (a) are satisfied when A is a field of charac­
teristic p and G has no ̂ -torsion or when A is arbitrary and G has no 
torsion. The only conspicuous missing general case occurs when 
A = Z2, H*(BG; Z2) is a polynomial algebra, but G does have 2-torsion. 
The result in case (b) largely fills this gap, since the hypotheses on G 
in (b) are satisfied, for example, when G is SO(n), G2, or F*. 

Before describing the key elements in the proof of the theorem, we 
single out some of its most important applications. First, taking 
Figure 1 to be a classifying diagram, we obtain the following result. 

COROLLARY. Let JJbea connected topological group such that H*(B U) 
is a polynomial algebra and let G be one of the Lie groups specified in 
(a) or (b) of the theorem. Let E-+BG be a principal bundle, with group 
U, classified by a map ƒ: BG-+BU. Then, in case (a), E°H*(E) is 
isomorphic to TorH*(Bu)(A, H*(BG)). In case (b), E°H*(E; Z2) is 
effectively computable, up to any specified finite total degree, from knowl­
edge off*: H*(BU; Z2)-*H*(BG; Z2). 

Similarly, if G is a closed subgroup of U, we can take Figure 2 to 
be the fibration U/G--+BGJ+B U, where ƒ is induced by the inclusion 
G—>U. We then obtain the following result. 

COROLLARY. Let Ubea connected topological group such that H*(B U) 
is a polynomial algebra. Let G be a closed subgroup of U, and sup­
pose that G is isomorphic to one of the groups specified in (a) or (b) 
of the theorem. Then in case (a), E°H*(U/G) is isomorphic to 
Tor^BcoCA, H*(BG)). In case (b), E°H*(U/G) Z2) is effectively com­
putable (up to any finite total degree) from knowledge off*: H*(B U; Z2) 
->H*(BG;Z2). 
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These corollaries are of course of greatest interest when U is a com­
pact Lie group, but it should be observed that U could also be, for 
example, the infinite unitary, symplectic, or special orthogonal group. 

Case (a) of the second corollary is a generalization of a conjecture 
of P. Baum [l] and extends results of Borel [3] for the case when U 
is a compact Lie group and rank G— rank U. Borel's result will be 
used in the proof of case (a) of our theorem. By a theorem of Car tan 
[5], which has been reproven and generalized by Baum and Smith 
[2], H*(U/G) and Torn*(Bu)(A, H*(BG)) are isomorphic as algebras 
when A is the real numbers and U is a compact Lie group. I t seems 
possible that this strengthened form of the corollary is true when A 
is any field of characteristic unequal to two, but the author has made 
no at tempt to prove this. I t follows from a universal coefficient the­
orem argument that if A = Z, then H* ( U/G) and TOTH*ÇBU) (A, H* (BG)) 
are isomorphic as Abelian groups. Further discussion of case (a) of this 
corollary and examples giving explicit computations may be found 
in Baum's paper [ l ] . 

Case (b) of the second corollary extends results obtained by Borel 
in [4]. In that paper, he developed an analogy between the roles 
played by maximal tori in real cohomology and maximal 2-groups 
(Z2)n in mod 2 cohomology. There is a simple consequence of the 
Cohen-Macauley theorem, as generalized by Auslander and Buchs-
baum, which helps to explain this analogy and can be used to reprove 
many of Borel's results. By use of this result and an argument due to 
Baum, the general cases of parts (a) and (b) of our theorem can be 
reduced to the special cases when G is a torus Tq and when G is a 2-
group (Z2)s. Since BT«~K((Zy, 2) and £(Z2)« = .K:((Z2)«, 1), all parts 
of the theorem deal primarily with the case when X is a product of 
K(*iry n)'s. 

Case (c) of the theorem is of greatest interest when B = X iK(0j, Wy). 
Here, with F~Q,B} Figure 1 defines a two-stage space E and, as shown 
by Adams, such spaces are universal examples for secondary cohomol­
ogy operations. Our results show how to compute the mod 2 cohomol­
ogy of such a space from knowledge of/*: H*(B; Z2)—>H*(X; Z2), 
provided that B is simply connected and that X satisfies the hypoth­
eses in (c). (Part (b) of the theorem covers the additional case 
X~ JRT((Z2)0, 1), and our detailed results will cover, less satisfactorily, 
the case X~ X*^(TT*, »<), where it is only assumed that each n ^ \ 
and that 7T»-has no cyclic summands Z2fe, h>l, if w»-=l.) If X~K(ir, n) 
and B = K(T', n')f nf>n + l, then Figure 1 defines a two-stage Post-
nikov system, and our results therefore solve, in a sense, the problem 
of computing the mod 2 cohomology of (almost) any space having 
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only two nonvanishing homotopy groups. Our solution is incomplete 
in that no procedure is given for determining H*(E; Z2) as an algebra 
from its associated graded algebra and that no procedure is given for 
determining the Steenrod operations. Of course, one would ideally 
like a characterization of H*(E; Z2) in terms of generators and rela­
tions, but such a result seems to be beyond the reach of our methods, 
or of any other methods presently known. 

Under appropriate stability assumptions on ƒ: X~>Bf Kristenson 
[8], Massey and Peterson [9], and Smith [12] have computed 
H*(E; Z%) as an algebra, where £ is a two-stage space. Their results 
also give partial information on the Steenrod operations. The only 
previous work known to the author in the unstable case is that of 
Hirsch, Cockcroft, and Barcus; their results essentially give methods 
for computing if*(£) additively by means of a complex involving 
H*(QB) and C*(X"). In [7], Hirsch gives a conjecture which, if true, 
would give a procedure for the additive computation of H*(E; Z%) 
in terms of H*(QB; Z%) and H*(X; Z2). His conjecture is easily seen 
to be equivalent to the statement that Ei — E* in the Eilenberg-
Moore spectral sequence, and our detailed results will therefore give 
a sufficient condition for its truth. Smith's notion of stability is that 
ƒ*: H*(B; Z%)—>H*(X; Zg) be a morphism of Hopf algebras, and he 
shows that E% is also equal to £00 in this case. Nevertheless, it seems 
most unlikely to the author that Hirsch's conjecture is true in general. 

The proof of our theorem is entirely algebraic. The crucial point is 
a complete description, in terms of certain cohomology operations, 
of all higher differentials in the Eilenberg-Moore spectral sequence. 
This algebraic work goes through in much greater generality than is 
needed for the present applications and has other interesting conse­
quences, some of which will be mentioned below. Thus let U be a 
DGA-algebra over A and let M be a right and N a left differential 
graded [/-module. Under mild technical hypotheses, there is a 
spectral sequence {Er(M, U,N)} such that Et^TorH(U)(H(M)fH(N)) 
and {Et} converges to Tort;(Af, N). In this spectral sequence, every 
higher differential is determined by a specific matric Massey product. 
These operations, which will be defined in [lö], generalize the ordi­
nary Massey products in that they are defined on appropriate n-
tuples of matrices rather than just on n-tuples of elements. 

The spectral sequence studied in our theorem is {-E, (A, C*(B), 
C*(X))}. To prove the theorem, we first use the fact that H*(B) is 
a polynomial algebra to show that the only cochains of B that enter 
into the computation of the relevant matric Massey products are 
iterated Ui-products of representative cocycles for elements of a set 
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of generators for H*(B). Using the previously indicated fact that X 
may be assumed to be a product of K(x, w)'s, we next construct a 
homology isomorphism of DGA-algebras a: C*(X)-+H*(X). We may 
then replace {£r(A, C*(B), C*(X))} by {£r(A, C*(B)9 H*(X))}. By 
keeping track of how a acts on iterated Ui-products, we can show how 
to calculate, without recourse to the cochain level, all matric Massey 
products relevant to the computation of the higher differentials. This 
yields an algorithm for the computation of JE<»(A, C*(B), H*(X)) in 
terms of/*: H*(B)~+H*(X). When X**K((Z<), 2 ) « B 2 \ a anni­
hilates all Ui-products. This implies that all relevant matric Massey 
products are zero, hence that the spectral sequence collapses, in case 
(a). In cases (b) and (c), sufficient conditions o n / * can be found for 
a to annihilate those Ui-products (the images under/# : C*(B)—>C*(X) 
of the cochains of B described above) which enter into the computa­
tion of the higher differentials, and thus sufficient conditions for the 
spectral sequence to collapse can be obtained. 

With appropriate choices of chains or cochains for M, U, and N, 
the description of the higher differentials in {Er(M, U, N)} in terms 
of matric Massey products has other, more immediate, applications 
to algebraic topology. In particular, it leads (under mild technical 
hypotheses) to complete descriptions of the kernels of the following 
maps in terms of matric Massey products: 

(1) The homology suspension <r*: H*(G)-+H*(BG), where G is a 
topological monoid (associative iï-space with unit). 

(2) p*: H*(Y)—>£T*(J5), where p: Y—>B is a principal fibration with 
fibre a topological monoid G. 

(3) U: H*(X)-~>H*(X X oEG)f where G is a topological group (with 
universal bundle EG—*BG) which operates on X. 

(4) The cohomology suspension cr*: H*(B)—>H*(ÇIB). 
(5) **: H*(Y)-+H*(F), where F±>Y-*B is a Serre fibration. 
(6) q*:H*(X)—>H*(E), where q: E-+X is a Serre fibration induced 

from an acyclic fibration F—>5. 
These results suggest that matric Massey products have a funda­

mental role to play in algebraic topology. A detailed study of their 
properties will appear in [lO]. 
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