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Let T be a densely defined closed linear operator on a Banach 
space X. F. E. Browder [l ] has defined the essential spectrum of T9 

ess(r), to be the set of complex numbers X such that at least one of the 
following conditions is satisfied : 

(i) The range (R(X — T) of the operator X—T is not closed in X; 
(ii) Ufc>o 91 [(X— T)k] is of infinite dimension, (91(5) being the null 

space of the operator 5) ; 
(iii) The point X is a limit point of the spectrum of T. 
In [7], M. Schechter discusses two other sets of complex numbers, 

<rew(T) and <rem(T), which have also been called the essential spectrum 
of T (cf. [lO]). He characterizes <rem(T) as the largest subset of the 
spectrum of T which remains invariant under compact perturbations 
of T. Although <Tem(T) is in general a proper subset of ess(r), Schechter 
gives conditions which guarantee that ess (IT) will remain invariant 
under compact (and certain other) perturbations of T. The proofs of 
these results usually reduce to showing that crem(T) =ess(r). 

In this paper we replace Schechter's conditions on T by a condition 
on the perturbing operator and show that ess(r) is invariant under 
compact (and certain other) perturbations of T, provided the per­
turbing operators commute with T. We shall say that a linear operator 
C commutes with T if (i) the domain of C, £>(C), contains the domain 
of T, (ii) CxEZ>(T) whenever xG£>(T), (iii) and TCx = CTx for 
xG£>(T2). 

Following the notation and terminology of [9], we denote the di­
mension of the null space or nullity of an operator 5 by n(S) and the 
codimension of the range or defect of 5 by d(S). The ascent of 5, a (5), 
is the smallest integer p such that 91 (S*) = 9l(5p+1), and the descent 
of 5, 5(5), is the smallest integer q such that (ft(5«) = (R(5«+1). (It may 
happen that a(S) = <*> or 5(5) = <*>.) Suppose that Xo is a pole of order 
p of the resolvent operator (X— T)"1 and let E be the spectral projec­
tion corresponding to the spectral set {Xo}. The range of E is the null 
space of ÇKo~T)p and the dimension of this space is called the rank 
of the pole Xo. 

THEOREM 1. Let T be a densely defined closed linear operator on a 
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Banach space X. Let Xo be a point of the spectrum of T. The following 
statements are equivalent: 

(1) Xo is not in ess(T). 
(2) Xo is a pole of the resolvent (X— T)~l of finite rank. 
(3) Xo has finite ascent, descent, and defect. 
(4) nÇko—T)=dÇko — T)< oo and aÇko — T) < oo. 

The equivalence of (1) and (2) was proved by F. E. Browder in 
Lemma 17 of [l]. Since that time results of Kaashoek [3], Taylor 
[9] and the author [ô] have provided tools for giving a short proof of 
the equivalence of (1), (2), and (4) without requiring that T have a 
dense domain. 

THEOREM 2. Let T be a closed linear operator on a Banach space X. 
A point Xo in the spectrum of T is a pole of the resolvent of finite rank if 
and only if there is a compact linear operator C with C($)(T))C.$)(T) 
and TCx—CTxfor x&£>(T2) such that Xo —(T+C) has a bounded in-
verse defined on all of X. 

COROLLARY. Let T be a closed linear operator on a Banach space X. 
Theness(T) is the largest subset of the spectrum <r(T) which remains in­
variant under perturbations of T by compact operators which commute 
with T, i.e. 

ess(T) = {XI X G <r(T + C) for every compact operator C such that 

C(£>(T)) C »(30 and TCx » CTxfor x G $>(T2)}. 

Both <Tem(T) and ess(r) are also invariant under certain unbounded 
perturbations. Suppose that T is a closed linear operator in X and C 
is a linear operator with £)(C)D£>(r). We say that C is T-closable if 
xn—»0, Txn—ïO, Cxnr*z for {xn} C&(T) implies 2 = 0. The operator C 
is T-compact if for any sequence {#»} G$)(T) satisfying 

||*»|| +||raw|| ^ const., 

the sequence {Cxn} has a convergent subsequence. The operator C is 
T-pseudo-compact if for any sequence {xn} (Z$)(T) satisfying 

N | + l | r ^ | | + | | C ^ | | ^ const., 

the sequence {Cxn} has a convergent subsequence. Theorem 3 below 
is the analogue of Theorems 2.1 and 2.2 of [7] (although in that paper 
T and C were densely defined). 

THEOREM 3. Let T be a closed linear operator on a Banach space X. 
Then ess(T) is the largest subset of the spectrum of T which remains in-
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variant under perturbations of T by operators C which commute with T 
and are either T-compact or are T-closable and T~pseudo-compact. 

The compactness condition on the perturbing operator C may be 
generalized in another direction. It is well known that 

n(T) - d(T) « n(T + C) - d(T + C) 

when C is a strictly singular operator (or is strictly singular relative to 
T, cf. [4]), or C is an inessential operator (cf. [5]). From Schechter's 
characterization [7] of crem(T) as the complement in the complex 
plane of the set of points X for which nÇk— T) = d(\-~ T) < 00 it follows 
immediately that <rem(T) is the largest subset of the spectrum which 
remains invariant under perturbations of T by strictly singular or in­
essential operators. Even more is true in the analogous situation for 
ess(T). The ideal of strictly singular operators and the ideal of in­
essential operators are both contained in a set of bounded linear 
operator called Riesz operators [2]. 

A Riesz operator R is characterized by the property that it is a 
bounded linear operator with dÇk—R) < 00 for all X 5̂ 0 [6]. 

THEOREM 4. Let T be a closed linear operator on a Banach space X. 
Then ess(jT) is the largest subset of the spectrum of T which remains in­
variant under perturbations of T by Riesz operators R which commute 
with T. 

Proofs of these results will appear elsewhere. 
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