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The purpose of this paper is to outline a proof of the following

MAIN THEOREM. If f is a closed continuous map of E* onto any space
S, then some point in S has an inverse image which is not an arc.

In 1936 J. H. Roberts [1] showed that there does not exist an
upper semicontinuous (usc) collection of arcs filling the plane. Re-
cently L. B. Treybig [2] has obtained some partial results for polyg-
onal arcs in E*, In 1955 Eldon Dyer [3] outlined a proof that there
is no continuous decomposition of E* into arcs. This proof incorpo-
rates some of the ideas of both Roberts and Dyer.

We will suppose that all statements are for E* for a given .

DEriNITIONS. If U and V are sets with disjoint closures, we say that
an arc a has k folds between U and V if a contains k41 disjoint
subarcs between U and V. Furthermore, if the distance between each
pair of the k41 subarcs is greater than ¢, we say that the width of the
folds is greater than e. If o contains a subarc which has endpoints in
U and which intersects V, then « is said to have a fold with the bend
in V.

If K is a set, €>0, let N.(K) denote the open e-neighborhood of K
in E» If H is a collection of sets, let H* denote the set of all points
covered by elements of H.

Suppose 4 is compact and B is a closed subset of 4. If any two
points of E*— A which are separated by 4 are also separated by B,
then B is said to be essential in A. If H is a usc collection of arcs and
points filling 4 and B intersects each element of H, then B is said to
be full in A2, If B meets each element of H in a continuum, then B is
said to be a quasi-section of AX,

Assume H is a usc collection of arcs and points filling the compact
set X.

LemMma 1. If Y is a quasi-section of XZ then Y is essential in X.

The proof is an exercise in the Vietoris mapping theorem on the
Cech homologies of X, ¥, and the decomposition space.

LeMMA 2. If K is full in XB, U is open, UNK = &, and no element

1 The results presented in this paper are a part of the author’s Ph.D. thesis at the
University of Wisconsin, written under the direction of Professor R. H. Bing.
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of H has a fold between K and U with bend in U, then X has an essential
subset that misses U.

It follows from the hypothesis that for each k€ H, h— (b U) con-
tains a unique component which intersects K. If ¥ is the union of all
such components, Y is a quasi-section of X# and hence Y is an es-
sential subset that misses U.

ReEMARK. Obviously, under the above conditions if U is connected,
U cannot intersect two distinct components of E»— X,

Suppose G is a usc collection of arcs and points filling some com-
plete metric space. The collection G is said to be continuous at an
element g if for every finite chain 3¢ of open sets covering g, there
exists an €>0 such that each element of G contained in N.(g) inter-
sects each element of 3C. The collection G is said to be equicontinuous
at g if G is continuous at g and no element of G contained in N.(g)
contains a fold between two nonadjacent links of 3. Roberts proved
that the set G; of elements at which G is continuous is dense in G,
and the set G: of elements at which G, is equicontinuous is dense
in Gl.

Suppose X is compact and H is a usc collection of arcs and points
filling X.

LemMA 3. If K is full in X¥, Q is a quasi-section of XH that contains
an endpoint of each element of H, and KMNQ= &, then there is o quasi-
section Y of XE such that Q is not contained in V.

Let k. denote an element of H,. We can find an €>0 such that &
contains no folds between N,.(K) and N.(Q). Since H; is equicon-
tinuous at hg, if AyE H, is near hy, then 7, contains no folds between
N (K) and N(Q). Suppose k& H, b is very near ks, and the com-
ponent of h— [FNN(K)] that meets Q contains a fold between
Nz (K) and N(Q). This implies that every element of H; very near &
must also contain such a fold, since every such element must span
between K and Q, and to do this it must “follow” % from N,(Q) to
N:.(K), back to N.(Q), and again to Ns.(K) before it can intersect K.
Hence from Lemma 2 we have a quasi-section ¥; of X¥# of arcs from
Bd N (X) to Q, and a quasi-section ¥, of Y3 which misses a very small
open set about AN Q. Trivially, ¥, is a quasi-section of X#, and this
completes the proof of Lemma 3.

We will suppose throughout the remainder of the paper that Gis a
usc collection of arcs filling E®.

Suppose g is an element at which G is continuous, U and V are
open sets with disjoint closures, and each of U and V contains an end-
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point of g. Let K denote a closed neighborhood of the endpoint of g
in U, KCU. Let M denote the set of all elements of G which intersect
Bd N(g), for some small e. Hence M* is compact and if € was selected
small enough, then (a) M*NK is full in M¢ ¥ and (b) V meets two
components of E»— M*, The remark following Lemma 2 implies
there is an arc with a fold between KM M and V, and hence

THEOREM 1. There exists an element of G with a fold between U and V
with the bend in V.

To prove the Main Theorem, we need to find some arc with in-
finitely many folds between U and V. It should be noted that it is
insufficient to obtain a sequence {a;}>o of elements of G such that
each a; contains j folds between U and V, since the limit of such a
sequence may be an arc with no folds at all. Thus we need sequences
{a;}.->o of arcs of G and { d¢}¢>o of positive numbers such that for
each j, if B>, o contains j folds between U and V of width at least
d;. The limit of such a sequence would be an arc with infinitely many
folds between U and V. The following is an analogue to a lemma of
Roberts.

THEOREM 2. There exisis an open set W such that each element of G
that meets W contains a fold between U and V.

REMARK. For >0 the set of all elements having a fold between T
and V of width =€ is closed. Thus using Theorem 2 and the Baire
category theorem we easily obtain an open set W’ and a positive
number d such that each element of G that meets W’ contains a fold
of width greater than d. The proof then proceeds similar to that of
Roberts.

The proof of Theorem 2 is crucial and requires more machinery.

Note that since U and V were selected arbitrarily it is sufficient to
show that for €>0, there is an open set W such that each element that
meets W contains a fold between N(U) and N.(V).

From Theorem 1 there is some arc « of G which contains a fold be-
tween U and V with the bend in V. Let o’ denote a subarc of & which
has a fold between U and V with the bend in ¥ but no subarc of o’ has
this property. Hence «’ minus its endpoints separates « into two
components K; and K. Let U; and U, denote small disjoint open sets
about K; and K, respectively. Thus aNUC U,\U U, and every ele-
ment of G near a meets either Uy or Us since every such element of G
must intersect U (every element near « is also near the element g at
which G is continuous). Hence if § is small enough, every element of
G contained in N(a) which meets both U; and U, contains a fold
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between N.(U) and V. Thus the following lemma implies Theorem 2.
Suppose &G, U and U, are open sets, each containing an end-
point of @, €>0, and every element of G near o meets either U, or Uy,

LeMMA 4. There exists an open set W such that every element of G
that meets W intersects both N(Uy) and N (U,).

We assume this lemma to be false.

Let G’ denote the usc collection of arcs and points filling E* such
that ¢’ &G’ if and only if either (a) for some element g of G, g’ is a
component of g— {gN\ [Nep(U)UNs(Us)]} or (b) g’ is a point of
N jp(Uy))\IN,jo(Us). Trivially, if Lemma 4 is false for G then itis false
for G'.

Let L denote the set of all elements of G’ which are near « (here o
is considered as a point set, since aEG’) and which fail to intersect
both N.(U:) and N.(U,). L is naturally divided into L,, those ele-
ments intersecting N.(Ui1) but not N.(U,), and L,, those elements
intersecting N.(U,) but not N.(U1).

Let M denote B*—L*, where B* is a very large ball containing g,
a, L*, U, V, etc.

LemMmA 4.1. M separates Uy from U,.

This is obvious since L*=L*ULs*

LEMMA 4.2, L* is dense near o.

This is a direct result from the assumption that Lemma 4 is false.

LeEmMA 4.3. No element of G’ near a contains a fold between N (Uy)
and N .(U,).

Suppose 8’ €G’ near « such that 8’ contains a fold between N (U,)
and N.(U,) with the bend in N.(U,). Let &G such that 3’Cg. If W
is a very small open set about a point in the bend of 8 in N(U,), then
every element of G that meets W must “follow” 8 into N.(U), since
recall that every element near a must intersect either U; or Uz We
are assuming such a W does not exist and hence this completes
Lemma 4.3.

Let Q denote Z¥*NLF¥.

LEMMA 4.4. Every essential subset of M contains Q.

Every subset of M that fails to contain every point of Q fails to
separate L* from Ly* and hence fails to separate U, from U,.

LEMMA 4.5. Q is a quasi-section of MM near o.
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If ¢’ &G, and p is a point of g'MNQ, then there is a subarc /, of g’
between Bd N, (U;) and Bd N.;(U;) containing p. We observe that
I, is the union of a segment in L* and a segment in L,*. Thus if ¢ is
another point of g'MQ, since g’ contains no fold between N.(U;) and
N(U.), then I,=1,, and hence p and ¢ lie in the same component of
g'MQ. Thus Q is a quasi-section of M¢'1¥ near a.

By a similar argument, if we let X denote L* N\ M near «, then
M’ = [Closure of (M —elements of G’ near ) ]\UX is a quasi-section of
MM, Hence M’ is an essential subset of M and contains Q by
Lemma 4.4. It follows from the definition of X that X is compact,
G’IX is a usc collection of arcs filling X such that Bd N (Uh) is
full in X¢'1X, and Q is a quasi-section of X which contains an end-
point of each arc in the decomposition. Lemma 3 implies there is
a quasi-section Y of X which does not contain Q. However, if M =
cl (M'—=X)UY, M" is a quasi-section of M’ and hence a quasi-section
of MM, Thus M" is an essential subset of M which does not con-
tain Q. This contradicts Lemma 4.4 and completes the proof of
Theorem 2.
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