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Let Q@ be an open set in C* and let » be a nonnegative function
defined in Q. We shall denote by 4,(Q) the set of all analytic functions
f in @ such that for some constants C; and Ce

(1) |7()| = Crexp(Cap(2)), 3€ Q.

It is obvious that 4,(Q) is a ring. We wish to determine when it is
generated by a given finite set of elements fy, + - -, fv. There is an
obvious necessary condition, for if fi, - - -, fy are generators for
A,(Q) we can in particular find gi, - - -, gnE4,(Q) so that 1= D f;g;.
Hence we have

1= 20 | fi(a) | Crexp(Cap(2))

for some constants C; and C;, that is,
@ [A@] + -+ [ w@) ] 2 aexp(—eap(x), s€Q

for some positive constants ¢; and c..

This note concerns the converse statement. Carleson [1] has
proved a deep result of that type, called the Corona Theorem, which
states that (2) implies that fi, + + -, fv generate 4,(Q) if p=0 and Q
is the unit disc in C. In a recent research announcement [5] in this
Bulletin, the Corona Theorem was used to prove the analogous result
when p(2) = ] z| and Q= C. However, we shall see here that this state-
ment is much more elementary than the Corona Theorem; indeed,
we shall prove a general result of this kind for functions of several
complex variables although no analogue of the Corona Theorem is
known there.

THEOREM 1. Let p be a plurisubharmonic funciion in the open set
QCC» such that
(i) all polynomials belong to A ,(Q2);

(ii) there exist constants Ky, - - -, K4 such that 2EQ and Iz—g'l
Sexp(—Kip(z) —K2)={€Q and p(§) = Ksp(2) + K.
Then fi, - - -, fnEA,(Q) generate A,() if and only if (2) is valid.

Before the proof we make a few remarks. First note that if d(z)
943



944 LARS HORMANDER [November

denotes the distance from zEQ to CQ then (ii) implies that d(2)
2 exp(— Kip(z) — Kz), that is,

#(2) 2 (log 1/d(z) — K3)/K1.

Hence p(2)— « if 2 converges to a boundary point of 2, so Q is pseudo-
convex and therefore a domain of holomorphy (cf. [3, Theorem
4.2.8]). On the other hand, if @ is a domain of holomorphy it follows
that p(z) =log 1/d(z) is plurisubharmonic, and (ii) is valid with
Ky=K;=1 and suitable K,, K;. Another example is obtained by
taking p(z) = Zl zjl » Q= Cn», where p is any positive number. When
n=1 this yields the results announced in [5]. However, the Corona
Theorem is not contained in Theorem 1 but will be discussed at the
end of the note.

We know already that (2) is a necessary condition for fy, - -+, fx
to be generators. To prove the sufficiency we shall apply a standard
homological argument (cf. e.g. Malgrange [6]) but first a few lemmas
are required.

LEMMA 2. If fEA,(Q) it follows that df/0z;E A »(Q).
Proo¥. From (1) and (ii) we obtain
[ f@®) | < Crexp(Ca(Kap(s) + K9) if | ¢ — 2| S exp(— Kip(z)— Ko).
Hence
| 97(2)/92;| < C1exp(Ca(Ksp(z) + Ko) + Kip(2) + Ko).

Since we shall use 8 cohomology with bounds in L2 norms, we also
note that the definition of 4,(Q2) can be expressed in terms of such
norms.

LemMmA 3. If f is analytic in Q, then fSA,(Q) if and only if for
some K

@) f | f|2-2®2an < o,

where d\ denotes the Lebesgue measure.

Proor. If (1) is valid we obtain (3) since (1+ | z| )27+ < By exp Bap(2)
in view of (i). On the other hand, it follows from (3) and (ii) that the
mean value of |f| over the ball {{; |{—z| Sexp(—Kip(z)—K,)} is
bounded by C exp(K(Ksp(z)+K4)+2n(K1p(2)+Kz)). Since this is
also a bound for | f(2)|, the lemma is proved.
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LemMMA 4. Let g be a form of type (0, 7+1) in Q with locally square
integrable coefficients and dg=0, and let ¢ be a plurisubharmonic func-
tion in Q such that

f | g]2ed\ < .

If r=0 it follows that there is a form f of type (0, r) with df =g and
€)) f | flzee(1 + | 2|2 =< f | g]2e*dn.

The norms here are defined as in §4.1 of [3]. The lemma follows
from Theorem 2.2.1’ in [2] by the argument used in [3] to derive
Theorem 4.4.2 from Theorem 4.4.1.

For nonnegative integers s and 7 we shall denote by L} the set of
all differential forms % of type (0, ) with values in A*C¥, such that
for some K

f | 2|2e22d)\ < oo,

In other words, for each multi-index I=(4, - - -, 4,) of length
| 7| =s with indices between 1 and N inclusively, & has a component
kr which is a differential form of type (0, 7) such that &7 is skew sym-
metric in I and

f | 7z |2e~2E2d\ < .

The 9 operator defines an unbounded map from L] to L}, ,; its domain
consists of all & L! such that 9%, defined in the sense of distribution
theory with @ acting on each component %y is an element of L!,,.
Furthermore, the interior product P; by (fi, - - -, fy) maps Lit?
into L}: If h&Li** then

N
(Pi)r = 2, hfs, | 1] =s.
1

We define P;L2=0. Clearly P2=0 and P; commutes with 9 since f;
are analytic, so we have a double complex.

LE_IidMA 5. The equation g =h has a solution g& L for every h&Li,
with 0h=0.

PRroOF. In view of (i) this is an immediate consequence of Lemma 4.
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Lemma 6. If g€L; and Pig=0, we can find h&L* such that
g="P;h and in addition dh& LiL] if dg=0.

Proor. We can take for & essentially the exterior product of g by
7/17] % More precisely, we set when | I| =s+1

s+1
hr = ; g (=)= /| 1],

where I; denotes the multi-index I= (4, - - -, 541) with the index 7;
removed. It follows from (2) that A€ L™, and since P,g=0 it is
obvious that P;h=g. If 9g =0 we can compute 3/ by operating on the
factor f;/ |f|? alone, so it follows from (2) and Lemma 2 that
ohe Lt

It is now easy to prove the following theorem which in view of
Lemma 3 contains Theorem 1 for r =s=0. (Actually Theorems 1 and
7 are equivalent.)

THEOREM 7. For every g& L, with dg=P;g=0 one can find h& L+
so that 9h=0 and P;h=g.

ProoF. The theorem is trivially valid when r># or s> N. In the
proof we may therefore assume that it has already been established
for larger values of r and s. By Lemma 6 we can find 4’ &L{*! so that

P =g oK E L.
Since 39%' =0 and P;0h' =6—P,«h' =9dg=0, it follows from the inductive
hypothesis that one can find 4" &€ L{t? such that

P = oK, oK' =0.

By Lemma 5 we can find 2"’ € L;*? so that 9h'"' =h"". If h=h' —Psh'"
we conclude that 8k=03k'—P;Oh'"' =0k —P;k'' =0, and that Psh
= P;h’' =g. The proof is complete.

We shall end this note by showing how the proofs of Carleson [1]
can be adapted to the conventional pattern used in the proof of
Theorem 1. This does not remove the main difficulties but it does
eliminate a tricky argument due to D. J. Newman, which was used
in [1] in the case of more than 2 generators. In the proof of Theorem
1 the main points were the existence theorems for the operators 9
and Py given in Lemmas 5 and 6. The proof of the Corona Theorem
requires a more precise version of both.

From now on £ will denote the unit disc in C. (All the arguments are
valid for any bounded open set in C with a C? boundary.) If uis a
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bounded measure in @ and ¢ is an integrable function on 9%, we shall
say that a distribution in 2 satisfying the Cauchy-Riemann equation

(5) ou/dz = u in Q

has boundary values ¢ on dQ provided that there exists a distribution
U with support in & such that U=« in Q and

(6) oU/05 = p — ¢dz/2i.

Here ¢dz is of course a measure on 99, and u is extended so that there
is no mass in the complement of Q. If #=0 it follows from (6) that
U=0, for dU/dz would otherwise be a distribution with support on
9dQ with positive transversal order. Hence # determines both u, ¢ and
U uniquely, so it is legitimate for us to say that ¢ is the boundary
value of u.

If u belongs to the Hardy class H? for some p =1, then ¢ coincides
a.e. with the boundary values in the usual sense, and u=0. Con-
versely, if # is analytic and has boundary values belonging to
Lr(0Q) in the sense of (6), it follows that u&H? (p=1). If fEH>
and u is a solution of (5) with boundary values ¢, then fu satisfies (5)
with u replaced by fu and has boundary values f¢. This is obvious
when f is analytic in a neighborhood of & and follows in general if we
first consider f(rz) with <1 and then let r—1, noting that the solu-
tion UE&'() of the equation dU/dz=F is a continuous function of
Fcg' () when it exists.

The existence of a solution of (6) with support in & means precisely
that the right hand side is orthogonal to all (entire) analytic functions.
Thus (5) has a solution with boundary values ¢ if and only if for
entire analytic f

[ an = @ [ s@s0n

In view of the Hahn-Banach Theorem it follows that there exists a
solution with boundary values of absolute value <C if and only if
for entire analytic f

Iffd”| = Cf | ) | |dz] /2.

A sufficient condition for this is given by the following result of [1].
(See also [4] where an extension to several variables is given.)
LemMA 8. There is a constant C such that
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) fn|v(z) |?] du@z) | = CMj;nleP ldz|, o€ H2(R), p>0,

for every measure u in Q such that
(8 [ul{t; ¢ —2| <r} s Mr, z€09 r>o0.

We now modify the definition of L} as follows:

h& Ly if dhr/dz is a bounded measure in @ and %; has boundary
values in L*(09), II =s; h& L] if hr=u;d% where pur is a measure in Q
satisfying (8), I I| =s. Of course we take L{=0 when r>1. From
Lemma 8 and the discussion preceding it we conclude that Lemma 5
remains valid and that {k; hEL, Jh=0} = H=.

Let f;&H>, j=1, - - -, N, and assume that for some ¢>0

2 | A@] + -+ | )] 2 e

If we define P; by means of these functions, the proof of Lemma 6
remains valid when s=1 but breaks down when s=0 since df,/9z
need not be a bounded function. We must therefore use another con-
struction, based on the following

LeMMA 9. For sufficiently small e>0 one can find a partition of unity
&; subordinate to the covering of Q by the open sets Q;= {z; | fj(z)l >ef
such that d¢;/ 9z, defined in the sense of distribution theory, is a measure
which satisfies (8) for all j and some M.

Admitting Lemma 9 for a moment we shall see that it implies the
Corona Theorem. With our new definition of L, we have already seen
that Lemma 5 remains valid as well as Lemma 6 for r5#0. To prove
Lemma 6 for =0 we need only replace f;/ I f | 2 in the previous proof
by ¢;/f; where ¢; is the partition of unity in Lemma 9. In fact,
A(p;/f:)/0z=f;"0¢,/0% satisfies (8) since ]fj| =ein supp ¢;. Hence the
proof of Theorem 7 can be applied without change. For r=5s=0 we
obtain the only interesting conclusion:

THEOREM 10. (The Corona Theorem). If fi, - - -, [y EH® and (2)’
s valid, it follows that fi, - - -, fx are generators for H™,

It remains to discuss the proof of Lemma 9. Since the set of
bounded functions ¥ with dy/dz satisfying (8) is a ring, the standard
technique for constructing partitions of unity can be applied to
derive Lemma 9 from

LeMMA 11. There exists a constant k such that if 0 <e<} and fEH>,
sup l fl 1, one can find ¢ with 0SY <1 so that 8Y/93 satisfies (8) and



1967 GENERATORS FOR SOME RINGS 949

V() =0 when |f(2)]| <eé, Y(2) =1 when |f(3)]| > e

This lemma was proved in a different formulation in [1] when f is
a Blaschke product. In fact, the main point in [1] is a construction
of certain curves I' surrounding the zeros of a Blaschke product and
satisfying conditions which mean precisely that the characteristic
function ¥ of the exterior of I" has the properties stated in Lemma 11.
Since the proof given in [1] is applicable to arbitrary fE H* and we
have no significant simplification to contribute, we shall not carry
out the proof here.

REFERENCES

1. L. Carleson, Interpolation by bounded analytic functions and the corona problem,
Ann. of Math. (2) 76 (1962), 547-559.

2. L. Hérmander, L2 estimates and existence theorems for the d operator, Acta Math.
113 (1965), 89-152.

3. , An introduction to complex analysis in several variables, D. Van Nos-
trand, Princeton, N. J., 1966.

4. , L? estimates for (pluri-) subharmonic functions, Math. Scand. 20 (1967),
65-78.

5. J. Kelleher and B. A. Taylor, An application of the corona theorem to some rings
of entire functions, Bull. Amer. Math. Soc. 73 (1967), 246-249.

6. B. Malgrange, Sur les systémes différentiels d coefficients constants, Coll. Int. du
Centre National de la Recherche Scientifique, Paris, 1963, pp. 113-122,

INSTITUTE FOR ADVANCED STUDY



