GENERATORS FOR SOME RINGS OF ANALYTIC FUNCTIONS

BY LARS HÖRMANDER

Communicated by R. C. Buck, July 10, 1967

Let Ω be an open set in \mathbb{C}^n and let p be a nonnegative function defined in Ω . We shall denote by $A_p(\Omega)$ the set of all analytic functions f in Ω such that for some constants C_1 and C_2

(1)
$$|f(z)| \leq C_1 \exp(C_2 \rho(z)), \quad z \in \Omega.$$

It is obvious that $A_p(\Omega)$ is a ring. We wish to determine when it is generated by a given finite set of elements f_1, \dots, f_N . There is an obvious necessary condition, for if f_1, \dots, f_N are generators for $A_p(\Omega)$ we can in particular find $g_1, \dots, g_N \in A_p(\Omega)$ so that $1 = \sum f_j g_j$. Hence we have

$$1 \leq \sum |f_j(z)| C_1 \exp(C_2 p(z))$$

for some constants C_1 and C_2 , that is,

$$(2) |f_1(z)| + \cdots + |f_N(z)| \ge c_1 \exp(-c_2 p(z)), z \in \Omega,$$

for some positive constants c_1 and c_2 .

This note concerns the converse statement. Carleson [1] has proved a deep result of that type, called the Corona Theorem, which states that (2) implies that f_1, \dots, f_N generate $A_p(\Omega)$ if p=0 and Ω is the unit disc in C. In a recent research announcement [5] in this Bulletin, the Corona Theorem was used to prove the analogous result when p(z) = |z| and $\Omega = C$. However, we shall see here that this statement is much more elementary than the Corona Theorem; indeed, we shall prove a general result of this kind for functions of several complex variables although no analogue of the Corona Theorem is known there.

Theorem 1. Let p be a plurisubharmonic function in the open set $\Omega \subset C^n$ such that

- (i) all polynomials belong to $A_p(\Omega)$;
- (ii) there exist constants K_1, \dots, K_4 such that $z \in \Omega$ and $|z-\zeta| \le \exp(-K_1 p(z) K_2) \Longrightarrow \zeta \in \Omega$ and $p(\zeta) \le K_3 p(z) + K_4$.

Then $f_1, \dots, f_N \in A_p(\Omega)$ generate $A_p(\Omega)$ if and only if (2) is valid.

Before the proof we make a few remarks. First note that if d(z)

denotes the distance from $z \in \Omega$ to $C\Omega$ then (ii) implies that $d(z) \ge \exp(-K_1 \rho(z) - K_2)$, that is,

$$p(z) \ge (\log 1/d(z) - K_2)/K_1$$
.

Hence $p(z) \to \infty$ if z converges to a boundary point of Ω , so Ω is pseudoconvex and therefore a domain of holomorphy (cf. [3, Theorem 4.2.8]). On the other hand, if Ω is a domain of holomorphy it follows that $p(z) = \log 1/d(z)$ is plurisubharmonic, and (ii) is valid with $K_1 = K_3 = 1$ and suitable K_2 , K_4 . Another example is obtained by taking $p(z) = \sum |z_j|^p$, $\Omega = \mathbb{C}^n$, where p is any positive number. When n=1 this yields the results announced in [5]. However, the Corona Theorem is not contained in Theorem 1 but will be discussed at the end of the note.

We know already that (2) is a necessary condition for f_1, \dots, f_N to be generators. To prove the sufficiency we shall apply a standard homological argument (cf. e.g. Malgrange [6]) but first a few lemmas are required.

LEMMA 2. If $f \in A_p(\Omega)$ it follows that $\partial f/\partial z_j \in A_p(\Omega)$.

PROOF. From (1) and (ii) we obtain

$$\left| f(\zeta) \right| \leq C_1 \exp(C_2(K_3 p(z) + K_4)) \quad \text{if } \left| \zeta - z \right| \leq \exp(-K_1 p(z) - K_2).$$

Hence

$$\left|\left.\partial f(z)/\partial z_{j}\right|\right| \leq C_{1} \exp(C_{2}(K_{3}p(z)+K_{4})+K_{1}p(z)+K_{2}).$$

Since we shall use $\bar{\partial}$ cohomology with bounds in L^2 norms, we also note that the definition of $A_p(\Omega)$ can be expressed in terms of such norms.

Lemma 3. If f is analytic in Ω , then $f \in A_p(\Omega)$ if and only if for some K

$$\int |f|^2 e^{-2Kp} d\lambda < \infty,$$

where $d\lambda$ denotes the Lebesgue measure.

PROOF. If (1) is valid we obtain (3) since $(1+|z|)^{2n+1} \le B_1 \exp B_2 p(z)$ in view of (i). On the other hand, it follows from (3) and (ii) that the mean value of |f| over the ball $\{\zeta; |\zeta-z| \le \exp(-K_1 p(z) - K_2)\}$ is bounded by $C \exp(K(K_2 p(z) + K_4) + 2n(K_1 p(z) + K_2))$. Since this is also a bound for |f(z)|, the lemma is proved.

LEMMA 4. Let g be a form of type (0, r+1) in Ω with locally square integrable coefficients and $\bar{\partial}g = 0$, and let ϕ be a plurisubharmonic function in Ω such that

$$\int |g|^2 e^{-\phi} d\lambda < \infty.$$

If $r \ge 0$ it follows that there is a form f of type (0, r) with $\overline{\partial} f = g$ and

(4)
$$\int |f|^2 e^{-\phi} (1 + |z|^2)^{-2} d\lambda \leq \int |g|^2 e^{-\phi} d\lambda.$$

The norms here are defined as in §4.1 of [3]. The lemma follows from Theorem 2.2.1' in [2] by the argument used in [3] to derive Theorem 4.4.2 from Theorem 4.4.1.

For nonnegative integers s and r we shall denote by L_r^s the set of all differential forms h of type (0, r) with values in $\Lambda^s \mathbb{C}^N$, such that for some K

$$\int |h|^2 e^{-2Kp} d\lambda < \infty.$$

In other words, for each multi-index $I = (i_1, \dots, i_s)$ of length |I| = s with indices between 1 and N inclusively, h has a component h_I which is a differential form of type (0, r) such that h_I is skew symmetric in I and

$$\int |h_I|^2 e^{-2Kp} d\lambda < \infty.$$

The $\bar{\partial}$ operator defines an unbounded map from L_r^s to L_{r+1}^s ; its domain consists of all $h \in L_r^s$ such that $\bar{\partial}h$, defined in the sense of distribution theory with $\bar{\partial}$ acting on each component h_I is an element of L_{r+1}^s . Furthermore, the interior product P_f by (f_1, \dots, f_N) maps L_r^{s+1} into L_r^s : If $h \in L_r^{s+1}$ then

$$(P_fh)_I = \sum_{1}^{N} h_{Ij}f_j, \qquad |I| = s.$$

We define $P_f L_r^0 = 0$. Clearly $P_f^2 = 0$ and P_f commutes with $\bar{\partial}$ since f_f are analytic, so we have a double complex.

LEMMA 5. The equation $\bar{\partial}g = h$ has a solution $g \in L_{\tau}^s$ for every $h \in L_{\tau+1}^s$ with $\bar{\partial}h = 0$.

PROOF. In view of (i) this is an immediate consequence of Lemma 4.

LEMMA 6. If $g \in L_r^s$ and $P_f g = 0$, we can find $h \in L_r^{s+1}$ such that $g = P_f h$ and in addition $\bar{\partial} h \in L_{r+1}^{s+1}$ if $\bar{\partial} g = 0$.

PROOF. We can take for h essentially the exterior product of g by $\tilde{f}/|f|^2$. More precisely, we set when |I|=s+1

$$h_{I} = \sum_{1}^{s+1} g_{I_{j}}(-1)^{s_{1}-j}\bar{f}^{+}_{i_{j}}/|f|^{2},$$

where I_j denotes the multi-index $I=(i_1, \dots, i_{s+1})$ with the index i_j removed. It follows from (2) that $h \in L_r^{s+1}$, and since $P_f g=0$ it is obvious that $P_f h=g$. If $\bar{\partial}g=0$ we can compute $\bar{\partial}h_I$ by operating on the factor $\bar{f}_{i_j}/|f|^2$ alone, so it follows from (2) and Lemma 2 that $\bar{\partial}h \in L_{r+1}^{s+1}$.

It is now easy to prove the following theorem which in view of Lemma 3 contains Theorem 1 for r=s=0. (Actually Theorems 1 and 7 are equivalent.)

THEOREM 7. For every $g \in L_r$ with $\bar{\partial} g = P_f g = 0$ one can find $h \in L_r^{s+1}$ so that $\bar{\partial} h = 0$ and $P_f h = g$.

PROOF. The theorem is trivially valid when r > n or s > N. In the proof we may therefore assume that it has already been established for larger values of r and s. By Lemma 6 we can find $h' \in L_r^{s+1}$ so that

$$P_f h' = g, \quad \bar{\partial} h' \in L_{r+1}^{s+1}.$$

Since $\bar{\partial}\bar{\partial}h'=0$ and $P_f\bar{\partial}h'=\bar{\partial}P_fh'=\bar{\partial}g=0$, it follows from the inductive hypothesis that one can find $h''\in L_{r+1}^{s+2}$ such that

$$P_f h^{\prime\prime} = \overline{\partial} h^{\prime}, \qquad \overline{\partial} h^{\prime\prime} = 0.$$

By Lemma 5 we can find $h''' \in L_r^{s+2}$ so that $\bar{\partial}h''' = h''$. If $h = h' - P_f h'''$ we conclude that $\bar{\partial}h = \bar{\partial}h' - P_f \bar{\partial}h''' = \bar{\partial}h' - P_f h'' = 0$, and that $P_f h = P_f h' = g$. The proof is complete.

We shall end this note by showing how the proofs of Carleson [1] can be adapted to the conventional pattern used in the proof of Theorem 1. This does not remove the main difficulties but it does eliminate a tricky argument due to D. J. Newman, which was used in [1] in the case of more than 2 generators. In the proof of Theorem 1 the main points were the existence theorems for the operators $\bar{\partial}$ and P_f given in Lemmas 5 and 6. The proof of the Corona Theorem requires a more precise version of both.

From now on Ω will denote the unit disc in C. (All the arguments are valid for any bounded open set in C with a C^2 boundary.) If μ is a

bounded measure in Ω and ϕ is an integrable function on $\partial\Omega$, we shall say that a distribution in Ω satisfying the Cauchy-Riemann equation

(5)
$$\partial u/\partial \bar{z} = \mu \text{ in } \Omega$$

has boundary values ϕ on $\partial\Omega$ provided that there exists a distribution U with support in $\bar{\Omega}$ such that U=u in Ω and

(6)
$$\partial U/\partial \bar{z} = \mu - \phi dz/2i.$$

Here ϕdz is of course a measure on $\partial\Omega$, and μ is extended so that there is no mass in the complement of Ω . If u=0 it follows from (6) that U=0, for $\partial U/\partial \bar{z}$ would otherwise be a distribution with support on $\partial\Omega$ with positive transversal order. Hence u determines both μ , ϕ and U uniquely, so it is legitimate for us to say that ϕ is the boundary value of u.

If u belongs to the Hardy class H^p for some $p \ge 1$, then ϕ coincides a.e. with the boundary values in the usual sense, and $\mu = 0$. Conversely, if u is analytic and has boundary values belonging to $L^p(\partial\Omega)$ in the sense of (6), it follows that $u \in H^p$ ($p \ge 1$). If $f \in H^\infty$ and u is a solution of (5) with boundary values ϕ , then fu satisfies (5) with μ replaced by $f\mu$ and has boundary values $f\phi$. This is obvious when f is analytic in a neighborhood of $\overline{\Omega}$ and follows in general if we first consider f(rz) with r < 1 and then let $r \to 1$, noting that the solution $U \in \mathcal{E}'(\overline{\Omega})$ of the equation $\partial U/\partial \overline{z} = F$ is a continuous function of $F \in \mathcal{E}'(\overline{\Omega})$ when it exists.

The existence of a solution of (6) with support in $\overline{\Omega}$ means precisely that the right hand side is orthogonal to all (entire) analytic functions. Thus (5) has a solution with boundary values ϕ if and only if for entire analytic f

$$\int f d\mu = (2i)^{-1} \int \phi(z) f(z) dz.$$

In view of the Hahn-Banach Theorem it follows that there exists a solution with boundary values of absolute value $\leq C$ if and only if for entire analytic f

$$\left| \int f d\mu \right| \leq C \int \left| f(z) \right| \left| dz \right| /2.$$

A sufficient condition for this is given by the following result of [1]. (See also [4] where an extension to several variables is given.)

LEMMA 8. There is a constant C such that

$$(7) \int_{\Omega} |v(z)|^{p} |d\mu(z)| \leq CM \int_{\partial\Omega} |v|^{p} |dz|, \quad v \in H^{p}(\Omega), \ p > 0,$$

for every measure μ in Ω such that

(8)
$$|\mu| \{\zeta; |\zeta - z| < r\} \leq Mr, \quad z \in \partial\Omega, r > 0.$$

We now modify the definition of L_r^s as follows:

 $h \in L^s_0$ if $\partial h_I/\partial \bar{z}$ is a bounded measure in Ω and h_I has boundary values in $L^{\infty}(\partial \Omega)$, |I| = s; $h \in L^s_1$ if $h_I = \mu_I d\bar{z}$ where μ_I is a measure in Ω satisfying (8), |I| = s. Of course we take $L^s_r = 0$ when r > 1. From Lemma 8 and the discussion preceding it we conclude that Lemma 5 remains valid and that $\{h; h \in L^0_0, \bar{\partial} h = 0\} = H^{\infty}$.

Let $f_j \in H^{\infty}$, $j = 1, \dots, N$, and assume that for some c > 0

$$(2)' |f_1(z)| + \cdots + |f_N(z)| \ge c.$$

If we define P_f by means of these functions, the proof of Lemma 6 remains valid when s=1 but breaks down when s=0 since $\partial f_j/\partial z$ need not be a bounded function. We must therefore use another construction, based on the following

LEMMA 9. For sufficiently small $\epsilon > 0$ one can find a partition of unity ϕ_j subordinate to the covering of Ω by the open sets $\Omega_j = \{z; |f_j(z)| > \epsilon\}$ such that $\partial \phi_j / \partial \bar{z}$, defined in the sense of distribution theory, is a measure which satisfies (8) for all j and some M.

Admitting Lemma 9 for a moment we shall see that it implies the Corona Theorem. With our new definition of L_r we have already seen that Lemma 5 remains valid as well as Lemma 6 for $r \neq 0$. To prove Lemma 6 for r = 0 we need only replace $\bar{f}_j / |f|^2$ in the previous proof by ϕ_j / f_j where ϕ_j is the partition of unity in Lemma 9. In fact, $\partial (\phi_j / f_j) / \partial \bar{z} = f_j^{-1} \partial \phi_j / \partial \bar{z}$ satisfies (8) since $|f_j| \geq \epsilon$ in supp ϕ_j . Hence the proof of Theorem 7 can be applied without change. For r = s = 0 we obtain the only interesting conclusion:

THEOREM 10. (The Corona Theorem). If $f_1, \dots, f_N \in H^{\infty}$ and (2)' is valid, it follows that f_1, \dots, f_N are generators for H^{∞} .

It remains to discuss the proof of Lemma 9. Since the set of bounded functions ψ with $\partial \psi/\partial \bar{z}$ satisfying (8) is a ring, the standard technique for constructing partitions of unity can be applied to derive Lemma 9 from

LEMMA 11. There exists a constant k such that if $0 < \epsilon < \frac{1}{2}$ and $f \in H^{\infty}$, sup $|f| \le 1$, one can find ψ with $0 \le \psi \le 1$ so that $\partial \psi / \partial \bar{z}$ satisfies (8) and

$$\psi(z) = 0$$
 when $|f(z)| < \epsilon^k$, $\psi(z) = 1$ when $|f(z)| > \epsilon$.

This lemma was proved in a different formulation in [1] when f is a Blaschke product. In fact, the main point in [1] is a construction of certain curves Γ surrounding the zeros of a Blaschke product and satisfying conditions which mean precisely that the characteristic function ψ of the exterior of Γ has the properties stated in Lemma 11. Since the proof given in [1] is applicable to arbitrary $f \in H^{\infty}$ and we have no significant simplification to contribute, we shall not carry out the proof here.

REFERENCES

- 1. L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547-559.
- 2. L. Hörmander, L^2 estimates and existence theorems for the $\bar{\partial}$ operator, Acta Math. 113 (1965), 89-152.
- 3. ——, An introduction to complex analysis in several variables, D. Van Nostrand, Princeton, N. J., 1966.
- 4. ——, L^p estimates for (pluri-) subharmonic functions, Math. Scand. 20 (1967), 65-78.
- 5. J. Kelleher and B. A. Taylor, An application of the corona theorem to some rings of entire functions, Bull. Amer. Math. Soc. 73 (1967), 246-249.
- 6. B. Malgrange, Sur les systèmes différentiels à coefficients constants, Coll. Int. du Centre National de la Recherche Scientifique, Paris, 1963, pp. 113-122.

INSTITUTE FOR ADVANCED STUDY