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We consider sequences {Pn}»-o,i,... of (not necessarily selfadjoint) 
projections in a Hilbert space H satisfying the orthogonality condi­
tions PnPm~hmnPn. For brevity, such a sequence {Pw} will be called 
a p-sequence. A ^-sequence {En} is selfadjoint if E* — En for all n. 
A selfadjoint ^-sequence {En\ is complete if ^T,Ent which always 
converges strongly, is equal to the identity. 

The object of this note is to prove the following theorem. 

THEOREM. Let {Pn} be a p-sequence, and {En} a complete selfad­
joint p-sequence. Furthermore, assume that 

(1) dim Po = dim E0 = m < » , 

(2) Z \\En(Pn - En)u\\* S c%u\\* for all uEH, 

where c is a constant such that 0 ^ c < 1. Then {Pn} is similar to {En}, 
that is, there exists a nonsingular linear operator W such that 

(3) Pn - W-*E.W, n - 0, 1, 2, . . . . 

PROOF. First we shall show that 

(4) W = J£ EnPn 

exists in the strong sense. Since Z-E» = 1 strongly, it suffices to show 
that 52(E„ — EnPn)=

 y^En{En—Pn) converges strongly. But this is 
true since 

(5) 
tn+p 

X En(En - Pn)u 
m+p 

= E H-E.Œ. - i\,)«||2 -> 0, « -» a 

by (2). Incidentally, we note that (5) implies ||i4|| g c < l , where 

(6) A = £ En(En - Pn) « 1 - Eo - £ EnPn. 

1 This work represents part of the results obtained while the author held a Miller 
Research Professorship. 
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Now (4) implies that WPn = EnPn = EnW, w = 0, 1, 2, • • • . Thus 
the theorem will be proved if we show that W is nonsingular. To this 
end we consider 

(7) Wx = £ EnPn = 1 - £o - A. 

Since E0 is a selfadjoint projection with dim E 0 = w < oo, 1—E0 is a 
Fredholm operator with 

nul(l - Eo) = m, ind(l - JE0) = 0, 7(1 ~ E0) = 1, 

where nul T denotes the nullity, ind T the index, and y(T) the re­
duced minimum modulus, of the operator T (for these notions see, 
e.g., [2, Chapter IV, §5.1]). Since ||i4|| < 1 = 7 ( 1 - E 0 ) , it follows that 
Wi = l— E 0 — A is also Fredholm, with 

(8) nul Wi S nul (1 - E0) = » , ind TFi = ind (1 - E0) = 0 

(see [2, Theorem 5.22]). Since 

(9) W = E0P0 + Wi, 

where E0Po is compact, W is also Fredholm and ind W=ind T7i = 0 
(see [2, Theorem 5.26]). To show that W is nonsingular, it is there­
fore sufficient to show that nul W = 0 . 

To this end we first prove that 

(10) N{Wi) = PoH, 

where N(T) denotes the null space of T. In fact, we have WiPo^O 
by (7) so that N(Wi)DPoH. But since dim P 0 = m and nul Wi^rn 
by (8), we must have (10). 

Suppose now that Wu = 0. Then 0 = EQWU — EOPQU and WiU==Wu 
—E0PoW = 0. Hence u = P0u by (10) and so E0w = EoPoW = 0. Thus 
(1-A)U = (WI+EQ)U*=0 by (7). Since | |il | | < 1 , we obtain u = 0. This 
shows that nul W=0 and completes the proof. 

REMARK. I t has been shown by C. Clark [ l ] that the theorem is 
useful in proving that certain ordinary differential operators are 
spectral in the sense of Dunford. 
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