WIENER-HOPF OPERATORS AND ABSOLUTELY CONTINUOUS SPECTRA¹

BY C. R. PUTNAM

Communicated by P. R. Halmos, May 10, 1967

If A is a selfadjoint operator on a Hilbert space \mathfrak{F} with spectral resolution $A = \int \lambda dE_{\lambda}$, it is known that the set of elements x in \mathfrak{F} for which $||E_{\lambda}x||^2$ is an absolutely continuous function of λ is a subspace, $\mathfrak{F}_a(A)$, reducing A; cf. Halmos [1, p. 104]. In case $\mathfrak{F}_a(A) = \mathfrak{F}$, A is said to be absolutely continuous. The following was proved in Putnam [4]; see also [5] and will be stated as a

Lemma. Let T be a bounded operator on a Hilbert space \mathfrak{H} and let

$$(1) T^*T - TT^* = C, C \ge 0.$$

If $A = T + T^*$, then $\mathfrak{F}_a(A) \supset \mathfrak{M}_T$, where \mathfrak{M}_T is the least subspace of \mathfrak{F} reducing T (that is, invariant under T and T^*) and containing the range of C.

The above will be used to give a short proof of the absolute continuity of certain bounded selfadjoint Wiener-Hopf operators on $L^2(0, \infty)$. For an extensive account of Wiener-Hopf operators on the half-line see Krein [2].

Let k(t), for $-\infty < t < \infty$, satisfy

(2)
$$k \in L^1(-\infty, \infty) \cap L^2(-\infty, \infty)$$
 and $k(-t) = \bar{k}(t)$.

Then the operator T on $\mathfrak{H} = L^2(0, \infty)$ defined by

(3)
$$(Tf)(t) = \int_0^t k(s-t)f(s)ds, \qquad 0 \le t < \infty,$$

is bounded. (In fact, the hypothesis $k \in L^1(-\infty, \infty)$ alone implies the boundedness of T, even $||T|| \le \int_{-\infty}^{\infty} |k(t)| dt$; cf. Krein [2, pp. 201–202].) The adjoint T^* , which is given by

(4)
$$(T^*f)(t) = \int_t^\infty k(s-t)f(s)ds,$$

and the selfadjoint operator $A = T + T^*$, where

(5)
$$(Af)(t) = \int_0^\infty k(s-t)f(s)ds,$$

¹ This work was supported by a National Science Foundation research grant.

are of course also bounded on $\mathfrak{H}=L^2(0,\,\infty)$. There will be proved the following

THEOREM. Let k(t) satisfy (2) and suppose that

(6)
$$K(\lambda) \equiv \int_{-\infty}^{\infty} k(t)e^{i\lambda t}dt \neq 0 \text{ a.e., } -\infty < \lambda < \infty.$$

Then the bounded selfadjoint operator A of (5) is absolutely continuous.

PROOF. A calculation similar to that in Putnam [3, p. 517], shows that, for $f \in \mathfrak{H}$, $||Tf||^2 - ||T^*f||^2 = ||Bf||^2$, where T is defined in (3) and

(7)
$$(Bf)(t) = \int_0^\infty k(t+s)f(s)ds,$$

so that (1) holds with $C=B^*B$. It will be shown that the set \mathfrak{M}_T of the Lemma is, in the present case, the entire space $\mathfrak{H}=L^2(0, \infty)$, and hence the absolute continuity of A will follow.

For $f \in L^2(0, \infty)$, define the Fourier transform $\hat{f}(\lambda)$ and the functions $F_+(\lambda)$ and $F_-(\lambda)$ by

(8)
$$\hat{f}(\lambda) = \int_{0}^{\infty} e^{-i\lambda t} f(t) dt \equiv F_{-}(\lambda)$$

and

(9)
$$F_{+}(\lambda) = \int_{0}^{\infty} e^{i\lambda t} f(t) dt.$$

The space of elements F_+ is a subspace of $L^2(-\infty, \infty)$ and will be denoted by R_+ ; similarly, the space of elements F_- will be denoted by R_- ($=\overline{R}_+$). (It is clear that R_+ [R_-] can be regarded as the space of Fourier transforms of functions in $L^2(-\infty, \infty)$ which are 0 on the left [right] half-line. Since orthogonality is preserved under Fourier transforms it follows in particular that $R_+ \perp R_-$.)

If $f \in -L^2$ (0, ∞) then

$$(Tf)^{\hat{}}(\lambda) = \int_0^\infty e^{-i\lambda t} \left[\int_0^t k(s-t)f(s)ds \right] dt$$

and hence, on inverting the order of integration, $(Tf)^{\hat{}}(\lambda) = \overline{K}_{+}(\lambda)\hat{f}(\lambda)$, where $K_{+}(\lambda)$ is defined by

(10)
$$K_{+}(\lambda) = \int_{0}^{\infty} e^{i\lambda t} k(t) dt.$$

(It may be noted that $\int_0^t k(s-t)f(s)ds$ is the convolution of \bar{k} and f on $0 \le t < \infty$.) More generally, an iteration shows that

$$(11) (T^n f)^{\hat{}}(\lambda) = \overline{K}_+^n \hat{f}(\lambda), n = 0, 1, 2, \cdots.$$

Let $g \perp \mathfrak{R}_{B^*B}$, so that Bg = 0, that is $\int_0^\infty k(t+s)g(s)ds$ is the 0 element of $\mathfrak{S} = L^2(0, \infty)$. Since, by (2), k(t+s) belongs to $L^2(0, \infty)$ for any fixed t, it follows that the last integral is a continuous function of t on $0 \le t < \infty$ and that

(12)
$$m_c \in \mathfrak{R}_{B^*B}$$
, where $m_c(t) = \bar{k}(t+c)$ and $c \ge 0$.

It is readily verified that

(13)
$$\hat{m}_c(\lambda) = e^{i\lambda c} \int_c^{\infty} e^{-i\lambda t} \bar{k}(t) dt.$$

Also, in view of the definition of $K(\lambda)$ in (6), one has

(14)
$$K(\lambda) = K_{+}(\lambda) + \overline{K}_{+}(\lambda),$$

where $K_{+}(\lambda)$ is defined in (10).

In order to prove that $\mathfrak{F}_a(A) = \mathfrak{F}(=L^2(0, \infty))$, it is sufficient, as noted above, to prove that $\mathfrak{M}_T = \mathfrak{F}$. Now, if $\mathfrak{M}_T \neq \mathfrak{F}$, then there exists a function $q \in \mathfrak{F}$ such that $q \neq 0$ and $q \perp \mathfrak{M}_T$. Let $Q = Q(\lambda)$ denote the Fourier transform of q, so that

(15)
$$Q(\lambda) = \int_0^\infty e^{-i\lambda t} q(t) dt \qquad (\in R_-).$$

In view of (12), it follows from the relation $q \perp M_T$ and the fact that orthogonality is preserved under Fourier transforms that

(16)
$$Q \perp (T^n f)^{\hat{}}(\lambda), n = 0, 1, 2, \dots, \text{ where } f(t) = m_c(t), c \ge 0.$$

Thus, by (11) and (13), $Q \perp \overline{K}_{+}^{n} e^{i\lambda c} \int_{c}^{\infty} e^{-i\lambda t} \overline{k}(t) dt$, for $c \geq 0$, that is,

$$(17) \quad Q \perp \overline{K}_{+}^{n+1} e^{i\lambda c} - \overline{K}_{+}^{n} e^{i\lambda c} \int_{0}^{c} e^{-i\lambda t} \overline{k}(t) dt \quad (n = 0, 1, 2, \cdots).$$

Since Q and $e^{i\lambda\epsilon}\int_0^\epsilon e^{-i\lambda t}\bar{k}(t)dt$ belong to R_- and R_+ respectively, it follows from (17) for n=0 that $Q\perp \overline{K}_+e^{i\lambda\epsilon}$ (therefore $Q\perp \overline{K}_+R_+$) and hence, by induction, that

(18)
$$Q \perp e^{i\lambda c} \overline{K}_{+}^{n}, \quad n = 1, 2, \cdots, \quad c \geq 0.$$

Relations (14) and (18) and the fact that $Q \perp R_+$ imply that $Q \perp K^n(\lambda)R_+$ for $n = 0, 1, 2, \cdots$, that is,

(19)
$$\int_{-\infty}^{\infty} K^{n}(\lambda) F_{+}(\lambda) \overline{Q}(\lambda) d\lambda = 0 \quad \text{for } n = 0, 1, 2, \cdots,$$

where $K(\lambda)$ is given in (6) and $F_{+}(\lambda)$ is an arbitrary element of R_{+} . Since $k(t) \in L^{1}(-\infty, \infty)$, the function $K(\lambda)$ is continuous and satisfies

(20)
$$K(\lambda) \to 0$$
 as $|\lambda| \to \infty$.

Also, by (2), $K(\lambda)$ is real. Let f(K) denote the characteristic function of the K-set: $|K| \ge 1/n$, where n is a positive integer. It follows from (19), Weierstrass' approximation theorem, and the fact that $F_+\overline{Q}$ is in $L^1(-\infty, \infty)$, that $\int_{-\infty}^{\infty} f(K(\lambda)) F_+(\lambda) \overline{Q}(\lambda) d\lambda = 0$ and hence

(21)
$$\int_{E_n} F_+(\lambda) \overline{Q}(\lambda) d\lambda = 0,$$

where $E_n = \{\lambda : |K(\lambda)| \ge 1/n\}$. Since, for $c \ge 0$, $e^{i\lambda c}\overline{Q}(\lambda)$ is in R_+ , one can choose F_+ in (21) to be $e^{i\lambda c}\overline{Q}$ and so $\int_{E_n} e^{i\lambda c}\overline{Q}^2 d\lambda = 0$. In view of (20),

(22)
$$E_n$$
 is a bounded set.

Since \overline{Q}^2 is in $L^1(-\infty, \infty)$, one can therefore differentiate under the last integral with respect to c and let $c \to 0+$ to obtain $\int_{E_n} \lambda^m \overline{Q}^2 d\lambda = 0$ $(m=0, 1, 2, \cdots; n=1, 2, \cdots)$. Again, using (22) and Weierstrass' theorem, one concludes that $Q(\lambda) = 0$ a.e. on E_n . In virtue of (6), the set $\bigcup_{n=1}^{\infty} E_n$ differs from $(-\infty, \infty)$ by a set of measure zero and hence $Q(\lambda) = 0$ a.e. on $(-\infty, \infty)$. This implies that q(t) = 0 a.e. on $0 \le t < \infty$, a contradiction. Thus $\mathfrak{M}_T = \mathfrak{F}$ and so $\mathfrak{F}_a(A) = \mathfrak{F}$ as was to be proved.

REFERENCES

- 1. P. R. Halmos, Introduction to Hilbert space, Chelsea, New York, 1951.
- 2. M. G. Krein, Integral equations on a half-line with kernel depending upon the difference of the arguments, Amer. Math. Soc. Transl. 22 (1962), 163-288.
- 3. C. R. Putnam, Commutators and absolutely continuous operators, Trans. Amer. Math. Soc. 87 (1958), 513-525.
- 4. —, On the structure of semi-normal operators, Bull. Amer. Math. Soc. 69 (1963), 818-819.
- 5. ——, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Math., Bd. 36, Springer, Berlin, 1967.

PURDUE UNIVERSITY