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If 4 is a selfadjoint operator on a Hilbert space § with spectral
resolution 4 = [NdE,, it is known that the set of elements x in § for
which || Exx||? is an absolutely continuous function of N is a subspace,
9a(A4), reducing 4; cf. Halmos [1, p. 104]. In case $,(4)=9, 4 is
said to be absolutely continuous. The following was proved in Put-
nam [4]; see also [5] and will be stated as a

LEMMA. Let T be a bounded operator on a Hilbert space O and let
(1) T*T — TT* = C, Cc=z0.

If A=T4T%*, then H.,(4) DMy, where Mr is the least subspace of
reducing T (that is, invariant under T and T*) and containing the range
of C.

The above will be used to give a short proof of the absolute conti-
nuity of certain bounded selfadjoint Wiener-Hopf operators on
L2(0, ). For an extensive account of Wiener-Hopf operators on the
half-line see Krein [2].

Let k(t), for — 0 <f< 0, satisfy

(2 kEL(— »,0)NLY— o, ») and k(-1 = k).
Then the operator T on $=L2(0, «) defined by
t

© O = [ #s— o, 0si<

0
is bounded. (In fact, the hypothesis ¥ L!(— », «) alone implies the
boundedness of T, even ||T]|</2.|k(t)|d¢; cf. Krein [2, pp. 201-
202].) The adjoint T*, which is given by
@ @@ = [ ks = Di9as,

12

and the selfadjoint operator 4 = T+ T*, where

) 4NQ) = f “h(s — D(s)ds,

1 This work was supported by a National Science Foundation research grant.
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are of course also bounded on §=_L2(0, «). There will be proved the
following

THEOREM. Let k(t) satisfy (2) and suppose that
(6) KQ\) Ef k(t)eMdt # 0 a.e., — o <AL ™,

Then the bounded selfadjoint operator A of (5) is absolutely continuous.

PRroOF. A calculation similar to that in Putnam [3, p. 517], shows
that, for f€9, || 7f||2—||T*f||2=|| Bf||2, where T is defined in (3) and

& BN = f "R+ 97()ds,

so that (1) holds with C=B*B. It will be shown that the set Ity of the
Lemma is, in the present case, the entire space $=L2(0, «), and
hence the absolute continuity of 4 will follow.

For fEL2*(0, ), define the Fourier transform f(\) and the func-
tions F.(\) and F_(\) by

® 7o = [ “engoan = ro)
0

and

© ) = [ensar

The space of elements F,. is a subspace of L?(— «, ) and will be
denoted by R, ; similarly, the space of elements F_ will be denoted by
R_(=R,). (It is clear that R, [R_] can be regarded as the space of
Fourier transforms of functions in L2(— «, «) which are 0 on the
left [right] half-line. Since orthogonality is preserved under Fourier
transforms it follows in particular that R, LR_.)

If fE—L2 (0, ) then

TN~ = fowe“"“[fo’ k(s — t)f(s)ds:l dat

and hence, on inverting the order of integration, (TY) " (\) = K+ A/ (\),
where K, (\) is defined by

(10) K\ = f " (i),
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(It may be noted that f§ k(s —£)f(s)ds is the convolution of % and f on
0=<t< «.) More generally, an iteration shows that

(11) (I'H O =KJa), n=01,2---.

Let g LR p*5, so that Bg=0, that is [§ k(t+s)g(s)ds is the 0 element
of $=L12(0, «). Since, by (2), k(¢t+s) belongs to L2(0, =) for any
fixed ¢, it follows that the last integral is a continuous function of { on
0=<t¢< « and that

(12) me & Rpep, where m () = k(t+¢) and ¢ = 0.

It is readily verified that
(13) () = eie f ME (1) dL.

Also, in view of the definition of K(\) in (6), one has
(14) KM\ = K.(\) + K. (),

where K (\) is defined in (10).

In order to prove that §,(4) =9 (=L2(0, »)), it is sufficient, as
noted above, to prove that My =9. Now, if Mrs= P, then there exists
a function ¢&€ 9 such that ¢>0 and ¢1Mr. Let Q=Q() denote the
Fourier transform of ¢, so that

(15) o0 = f “engd (ERD.

In view of (12), it follows from the relation ¢ L M7 and the fact that
orthogonality is preserved under Fourier transforms that

(16) Q L (Tnf)AO‘), n=012---, where f(t) = ”zc(t)’ ¢z 0.
Thus, by (11) and (13), QLK% e [e~iME(t)dt, for =0, that is,

—n41 dAc —n

(17) Q ..L .K+ (4 e K.,.Bﬂcf e_i)‘tk'(t)dt (n = 0’ 1, 2: st )'
0

Since Q and e [{e—E(t)dt belong to R_ and R, respectivel&, it
follows from (17) for n=0 that QLK e (therefore Q LK, R,) and
hence, by induction, that

(18) QLR n=1,2---, c¢cz=0.

Relations (14) and (18) and the fact that QLR, imply that
QLlK*M\)Ryforn=0,1,2, - - ., thatis,
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(19) f QK"(A)F.‘.()\)@()\)d)\ =0 forn=0,1,2"--,

where K(\) is given in (6) and F;(\) is an arbitrary element of R,.
Since k()& LY(— », «), the function K(\) is continuous and
satisfies

(20) KN —0 as |[A] — .

Also, by (2), K(\) is real. Let f(K) denote the characteristic function
of the K-set: | K| 2 1/n, where n is a positive integer. It follows from
(19), Weierstrass’ approximation theorem, and the fact that F,Q is
in L1(— o, »), that [Z,f(KA\))F+(\)Q\)d\ =0 and hence

() J e =o,

where E,= {\: IK()\)I =1/n}. Since, for ¢=0, e™Q(\) is in Ry, one
can choose Fy in (21) to be e?Q and so [g,e?Q%\=0. In view of
(20),

(22) E, is a bounded set.

Since Q2 is in L!(— o, »), one can therefore differentiate under the
last integral with respect to ¢ and let c—0+ to obtain [ A"\ =0
(m=0,1,2,--.;n=1,2,---). Again, using (22) and Weierstrass’
theorem, one concludes that Q(\) =0 a.e. on E,. In virtue of (6), the
set U, E, differs from (— o, «) by a set of measure zero and hence
Q(\)=0a.e. on (— «, ). This implies that g(f) =0 a.e. on 0=t < 0,
a contradiction. Thus Mr=9 and so H.(4) =P as was to be proved.
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