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Let A be a closed, densely defined operator in a Banach space X. 
There are several definitions of the "essential" spectrum of A (cf. 
[ l ] , [2]). According to Wolf [3], [4] it is the complement in the com­
plex plane of the $-set of A. The $-set $A of A is the set of points X 
for which 

(a) a(A — X), the dimension of the null space of A — X, is finite 
(b) R(A —X), the range of A —X, is closed 
(c) p(A •—X), the codimension of R(^4 — X), is finite. 

We denote the essential spectrum according to this definition by 
dew{A). The set crem(A)f as defined in [ l ] , [2] is obtained by adding 
to <rew(A) those points X for which a(A —X) 9^^{A —X). It is the largest 
subset of <r(A) which remains invariant under compact perturbations. 
Finally, to obtain the set aeb(A), which is the essential spectrum ac­
cording to Browder [5], we add to aem{A) those points of cr(A) which 
are not isolated. 

Interest in the sets aeW(A), <rem(A), aeb(A) is centered about the fact 
that they remain invariant under certain perturbations of A. In par­
ticular one has 

THEOREM 1. Let A and B be closed densely defined operators in X. If 
\oÇzp(A)r\p(B) and (A —Xo)"1 — (B— Xo)_1 is a compact operator in X, 
then 

(1) cr6W{A) = aew(B) 

and 

( 2 ) (rem(A) = <Tem{B). 

Moreover, if the complement Co~em(A) of o-em (A) is connected, then 

(3) aeb(A) - aeb(B). 

This theorem was proved in [2] under the additional assumption 
that D(B)^D(A). For selfadjoint operators the basic idea was em­
ployed by Birman [ó], Wolf [4] and Rejto [7]. 

1 Research supported in part by National Science Foundation Grant GP-5676 and 
in part by a NSF Senior Postdoctoral Fellowship. 
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We shall apply Theorem 1 to the situation of an elliptic operator 
perturbed by a potential. Let 

(4) A(x, D) = X) D*atkV(x)Dv 

be a uniformly strongly elliptic operator of order 2r defined in the 
whole of ^-dimensional Euclidean space En. Here /x = (/xi, • • • , /iw), 
v = (ph • . -, vn) are multi-indices of nonnegative integers, |/x| 
= Mi+ • • • +Hn,D»=(--i)MdM/do(% • • • dofr. The coefficients aM„(x) 
are to have bounded derivatives of all orders ^max( | ju | , \v\) in En 

and for |/x| =\v\ =r the aM„(#) are to be uniformly continuous in En, 
By uniform strong ellipticity we mean that there is a constant Co>0 
such that 

Re £ *,,,(*)«'£ Co| Él* 
IMI—M-T 

for real vectors £ = (£i, • • • , £n) and all %G£W, where |£| 2 = £? + • • • 

Let ^40 be the operator A(x, D) acting on the set CQ of infinitely 
differentiable functions with compact supports. We shall see that 
there is an extension of A0 containing a half plane in its resolvent set. 

Let A be a densely defined linear operator in a Hubert space H. 
According to Kato [8] it is called regularly accretive if there is a bi­
linear form a(ut v) such that 

(1) D(a)-DD(A) 
(2) Re a is closed, and there is a constant Y > 0 such that 

(5) Re a(u, u) ^ y | Im a(u, u) | for u G D(a) 

(3) For uÇ:D(a) and fÇzH one has 

(6) a(u, v) = (ƒ, v) for all v G 29(a) 

if and only if uE:D(A) and Au=f. 
We call a(z*, u) a bilinear form if it is linear in u and conjugate 

linear in v. We write a(u) in place of a(u, u) and call a(w, v) closed if 
unÇ:D(a), un—^u in H and a(wn —wm)~^0 imply that uE:D(a) and 
a(un)—*a(u). I t is called preclosed if #nG-D(a), #n-*0, a(wn--Wm)—»0 
imply a(un)—>0. It is easily seen that a preclosed nonnegative sym­
metric form has a closure (cf. [9]). The real and imaginary parts of 
a bilinear form are defined as 

Re a(u, v) = J[#(^, v) + a(v, u) J ; Im a(u,v) = — [a(u, v) — a(t>, u)]. 
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One can show easily that the bilinear form corresponding to a regu­
larly accretive operator is unique. Let A be a regularly accretive ex­
tension of an operator A 0. We shall call A minimal if for any regularly 
accretive extension A' of A0 we have 

(i) D(a)QD(a'), 
(ii) a'{u, v) = a(u, v), u, v£:D(a), 

where a and a' are the bilinear forms corresponding to A and A'', 
respectively. 

The following theorem is basic in our study and answers a question 
raised by Kato [8]. 

THEOREM 2. Let A0be a densely defined linear operator in H. Then a 
necessary and sufficient condition that A$ have a regularly accretive ex­
tension is that 

(7) Re(^40^, u) §: y | Im(^40w, u)\ « G D(A0) 

holds for some constant y > 0. Moreover, there is a minimal extension 
which satisfies (7) with the same constant y. 

Returning to our operator A (x, D) we wish to determine conditions 
on a function q(x) so that A0+q+\ has a regularly accretive exten­
sion. We formulate our conditions in terms of the following expres­
sions (compare [lO]). We define 

Ma%p(q) = sup I | #(3;) \p I x — y \ady —n < a < 0 
X J \x-y\<l 

= sup I U C y ) | p ( l + log-j Ady a = 0 
x J \^y\<i \ I x - y\I 

/
I q(y) \pdy « > 0 sup 

X ** \x~y\<\ 

We let Ma,p be the set of functions q for which Ma,P(q) < °°. 
For any function h(x) we set h+(x) =max[0, h(x)] and h~(x) 

= min[0, h(x)]. Employing Theorem 2, we have 

THEOREM 3. Assume that Im gG¥ 2 î -n , i and that (Re q)~Ç:Ma,\for 
some a satisfying —n<a<2r — n. Then there is a \ o > 0 such that A0 

+ g + X has a regularly accretive extension f or each \>Xo. 

We now apply Theorem 1 to obtain 

THEOREM 4. Let q satisfy the hypotheses of Theorem 3 and, in addi­
tion, assume that (Re q)+ÇîM$ti, fi<4cr — n, and 
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(8) f \q(y)\dy-+0 as \ x\ - • oo. 

Let A and B be the minimal regularly accretive extensions of AQ-\-\ and 
A0+q+\ respectively, X>X0. Then (1) and (2) hold. If Caem(A) is 
connected, then (3) holds. 

COROLLARY 5. If Im qEiM^r-n,!, Re qGMa,i and (8) holds, then the 
conclusions of Theorems 3 and 4 hold. 

Next we assume that there are constants a^ such that for each 

(9) I | a^iy) — a^v \ dy —» 0 as | x | —* oo. 
J \x-y\<l 

We set 

4(oo, Z>) = Z Z ^ ö ' 

and let ^ be the minimal operator of A(<*>, D), i.e., the closure in 
L2 of A(co, D) defined on CQ. The spectrum of A^+X is easily com­
puted via Fourier transforms and consists of the set R\ of those com­
plex rj for which there is a real vector £ satisfying SlMl.Msr fl/w^'+X 
=77. Moreover, if rj is in o'^oo), then the range of A^—rj is not closed 
in L2. Hence we have 

(10) ow(4oo) = <r,m(i4oo) = O-AĈ OO) = o-(4oo) = #0. 

We can now state 

THEOREM 6. /ƒ (9) holds as well as the assumptions of Theorems 3 
and 4, we have 

(11) *eW(B) = ^ ( 5 ) = 12x, 

where B is the minimal regularly accretive extension of ^40+<7+X. If 
CR\ is connected, we have 

(12) aeb(B) = Rx 

as well. 

In the next two theorems we consider the perturbation of A (x, D) 
by another operator of the same form 

C(x, D) = £ D>C„(x)D\ 
iMl.lHsr 
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We assume that D»(CpVu)ÇzL* for UÇZCQ and let C0 denote the oper­
ator C(x, D) with domain CQ. We let Af_»,2 denote the set of essen­
tially bounded functions and take a to satisfy 2r—n — 2<a<2r — n. 
We make two sets of assumptions 

H I . (a) (Re C ^ - G A f o ^ w , ! f o r | / i | * r , 
(Re CMM)- = 0 for | p | = r 

(b) For JLIT2^ 

where 

where 

&#•*(*) G M*2r-2|Ml-n,2, &1M*0*0 £ Af«-2M.« \V\ ^ f 

gH*v(%) G Ma_2|M|,2, *l|.r(«) G M_n,2, I M I 5* f, I ?| = f 

&!.,(*) = 0 I M I = I v I = r 
(c) CM,(x) — Cp»(x) = g2»p(x)h2flP(x) 

g2fiv(x) G lf2 r-2|/*l-n,2, h2nv{x) G M 2 r - 2 M - n , 2 

H2. (a) (Re C w )+e^-« i , . i . i , ] 8<4r -w 
(b) T W ^ K I I C„,Cy) I dy->0 as | a | -> 00. 

THEOREM 7. Under assumptions H l tóere is a X0>0 swcfe tóa£ 
A0 + Co+\ has a regularly accretive extension f or each \>Xo. 

THEOREM 8. Under assumptions HI awd H2y we have 

(13) CTew(E) = <rew,(^4), <rem(E) = 0*^(^4), 

wAere E is /Âe minimal regularly accretive extension of A 0 + CQ+\. V 
Caem(A) is connected, ^ew o-eb(E) — <reb(A). If (9) ftaWs, /feera 

(14) crew(E) = <rew(£) = i?x. 
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Introduction. In this note we summarize the main results of a 
paper, Representations of uniformly hyperfinite algebras and their asso­
ciated von Neumann rings, which will be published elsewhere. 

A uniformly hyperfinite (UHF) algebra of class {n^} is a C*-
algebra, 31, which contains an increasing sequence of factors, 
M1QM2CI • ' - C2Ï» of types, (IWl), (In8)> * * * , such that 2t is the norm 
closure of U^x M{. I t is always assumed that the integers, »t—>oo as 
i—>oo. U H F algebras have been defined and studied by Glimm [2]. 

If II is a ^representation of a UHF algebra, 21, on a Hilbert space, 
then the von Neumann ring, R = {11(81)}", generated by the represen­
tation algebra, 11(21), has the property that R is the strong closure of 
an increasing sequence of type (Iw) factors. Von Neumann rings with 
this property will be called hyperfinite rings. I t is clear that every 


