ON NORMAL RIEMANNIAN HOMOGENEOUS
SPACES OF RANK 1

BY ISAAC CHAVEL!
Communicated by E. Calabi, January 5, 1967
In this note we shall prove (cf. definitions in [2]) the following

THEOREM. Let G/H be a simply connected normal Riemannian homo-
geneous space of rank 1 such that every point Q conjugate to Po=m(H)
(w is the natural projection) is isotropically conjugate to Py; then G/H
1s homeomorphic to a Riemannian symmetric space of rank 1.

1. Preliminaries. M. Berger [1] has classified the simply connected
normal Riemannian homogeneous spaces of rank 1, and with the ex-
ception of two, viz, Sp(2)/SU(2) and SU(5)/(Sp(2) X T) all are homeo-
morphic to a Riemannian symmetric space of rank 1. To prove the
theorem it therefore suffices to exhibit in each of the spaces
Sp(2)/SU(2), SU(5)/(Sp(2) XT) a conjugate point of Py=w(H) at
which no isotropic Jacobi field vanishes. (A Jacobi field along a geo-
desic a(s) (¢ (0) = P,) is 1sotropic, if it is induded by a 1-parameter sub-
group of H. A point at which at least one isotropic Jacobi field van-
ishes is said to be isotropically conjugate to P,.) Furthermore, since
the zeros (if they exist) of an isotropic Jacobi field occur only at
integral multiples of a fixed real number (Lemma 1 of [2]), it suffices
to exhibit in each case a Jacobi field along a geodesic emanating from
P,, vanishing for s=a and not for s=2a (s=arc length along the
geodesic), such that no Jacobi field with periodic zeros vanishes for
s=a. In [2] we exhibited the desired Jacobi field for the space
Sp(2)/SU(2); and we now do the same for the second example.

The equations we will solve will read as:

(1) dna/ds® + (Quy [\, Qs])(dns/ds) + (Qay [[N, Qelt, \Ims = 0,

a, B (repeated indices summed) =1, - - - , #=dim G/H. In equation
(1), s denotes arc length along the geodesic, { , ) the inner product on
g=bh+m, m=bh*, Q, an orthonormal basis of m, and AEm the initial
unit velocity vector of the geodesic—as usual m is identified with the
tangent space of Po==(H) [3]. [ , ] is the Lie multiplication in g,
and [, ]y its projection onto h. We note that the matrices

(2 Tap) = {Qas [)‘7 Qﬂ]):
(3) Kaﬂo‘) = <Qa’ [[)‘7 Qﬂ]b) )‘]>
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are respectively skew-symmetric and symmetric [2].

Equation (1) is Jacobi’s equation of geodesic deviation written in
the canonical connection (of the second kind [3])—which has the
same geodesics as the metric connection—and with respect to an
orthonormal frame { e.(s)} along the geodesic such that: (i) e,(0)
=Qp a=1, - - -, n, and (ii) for each o, the field e.(s) is parallel in
the canonical connection [2]. The vanishing of the covariant deriva-
tives of the torsion and curvature tensors of the canonical connection
guarantees that the coefficients are constant. For the Riemannian
symmetric case, where the metric and the canonical connections co-
incide, see [4].

We now turn to the space SU(5)/(Sp(2) XT).

2. Proof of the theorem. We first calculate the coefficients of
Jacobi’s equation with respect to the Lie algebra couple (44, C:® R).
Let Ej;, be the matrix with a 1 in the jth row and kth column and 0
elsewhere: Ej; = (6;+01:). Then, setting
i*=—1, Ap= (Ejj— Ew), B = En — Erj, Ci = i(En+ Eu)
we have

[4+i, Ari] = — 8B + 8B + 4Bk — 8B,

[4,s, Bl = 84Crt — 3:Cri — 81Cit + 851Cin,

(44, Cii] = — 8B — 8B + 8Bj1 + 8:Bir,

[B.s, Bu] = 8jtBri — 81Bn — 8Bt + 8:1Bir,

[Brjp Bkl] = 8;1ICrk + 8;tCr1 — 86,Cit — 6,1Cy1,

[Cuiy Chi) = — 851Bri — 8;1Bix — 8 Bjt — 8,1Bi.
Furthermore, setting (X, Y)= —1% trace (X, Y), X, YEA,, we obtain
an orthogonal decomposition for the couple (44, C:®R):

S1 = Au; Sz = Bis;  Ss= Bu;  Sa= (Bis — Bas)/2102;

Ss = (C1s + Cas) /2112,

S¢ = (Bu + Bas)/212; S; = (C1a — Ca3)/2'%; Ss = As; S¢ = Bay;
S10 = Cas; S = 2(As — A1/2)/3'12,

Q1 = 3M2A13/2M2 — Ayaf6'12 — A15/6'%; Q= (Bis + Bas)/2'%;
Qs = (C1s — C24)/2Y%; Q4 = (Bus — Bas)/2'%; Qs = (Cuu + Cas)/2V/%;
Qs = Bis; Q1= Cus; Qs = Ba; Qo = Cas; Q10 = Bss; Qu = Cy;,
Q12 = Bus; Qs = Cys
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where Sy, - - -, Su, span C;® R, and Qy, - - -, Qi3span m= (C:® R)*.

We let o be the geodesic emanating from P, given by o(s)
=x(exp(sQs)). Then for the torsion terms T.s(Qs) we have: Tis
=—Tn= 1/61/2; —Ta0=Trwe=Tsnu=—Tus=—Ts12=T1,:=Ts1
= —Ty35=1/212; all the rest are zero. For the curvature terms
K.5(Qs) we have Kyy=4; Kgs=Kgo=K1000=1; Kunu=Kn,12=Kus1s
=1/2; all the rest are zero.

The associated characteristic polynomial of (1) along o(s)
=m(exp(sQs)) is then calculated to be

0 = det(x?I + T + K)
= x12(x2 4 1)5(x% + 3/2) (22 + 25/6).

A basis of solutions, 5(s), of (1) satisfying 7(0) =0 is given by:
m(s) = a1(1 — cos(5s/61/2)) 4+ aa(20(6/2)s + sin(5s/6'/?)),
72(s) = aa(l — cos(31/25/21/2)) 4 aa(6'/2s + sin(31/25/21/2)),
73(s) = as(1 — coss) + ag(s + sins),

74(s) = az(1 — coss) + as(s + sins),

75(s) = ag(1 — coss) + ai(s + sins),

ne(s) = a11S,

71(s) = — Sa;sin(5s/6'/2) + Saa(l — cos(5s/6/2)),

78(s) = azsins,

79(s) = aizsins,
710(s) = 3203 sin(31/25/21/2) — 31/2q,(1 — cos(31/25/21/2)),

n(s) = — 212q5sin s + 2/2a4(1 — cos s),
n12(s) = 212aysins — 21/2a5(1 — coss),
713(s) = — 21/2q4sin s 4+ 2'/2a19(1 — cos 5).

Now, as we shall show (cf. Remark), the subspace of the isotropic
Jacobi fields along 7(exp(s, Qs)) are spanned by the solutions oy = 8,
j=1, 3,7, 12. Furthermore there exist o, g such that asa6%0 and the
solution %(s; 0, - - -, 0, as, ag, 0, - - -, 0) of (1) has zeros. The values,
o, of s for which 9(s) =0 are the zeros « of the determinant

1 —coss s-+sins

—sins 1 —coss

=f(s) =2(1 —cos s)+s-sin s such that a#2mk where % is any integer.
Note that f(0) =0, f(s) >0, 0<s<m, f(r) =4, f(4r/3) <0, which im-
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plies there exists o, # <a<4mw/3 such that f(a) =0. The zeros of the
isotropic Jacobi fields are at 2w (6)'/2/5, m, 2w (2)1/2/342, 47 (6)Y/2/5,
2w, and higher value of s. 6Y2<5/2 implies (27/5)6Y2<w; and
(4w/5)6'2>8w/5>4w/3; and 2(2)Y21r/312>4xw/3, which implies that
no isotropic Jacobi field vanishes for s=a—and the theorem is
proven.

REMARK. Let o(s) =w(exp(sB)) be a geodesic emanating from P,
in a reductive homogeneous space G/H, with Lie algebra decomposi-
tion g=h-4m, B&Em, and let v(s, € be the isotropic variation of ¢
given by v(s, €)=7(exp(ed)) -w(exp(sB)), AEH. Then

d(dr(exp ed)-B)/de = [4, B]
where the above derivative is taken in the vector space m; and
d(dr(exp eA)-B)/de = 51/ds|smo = Dn/ds |smo,

where 7 is the induced isotropic Jacobi field of v(s, €), §/ds is w-variant
differentiation along ¢ (s) with respect to the Cartan connection and
D/ds is covariant differentiation along o(s) with respect to the
canonical connection.

Therefore, in the above example (§2), since

[31/251 - Su, Qe] = [Sz - Sa, QG] = [S4 - Sa; QG] = [SG - S7’ QG]
= [Ss, Qo] = [Ss, Q] = [S10, Qs] = 0,

the corresponding isotropic variations of w(exp(sQs)) are all trivial,
i.e., they leave the geodesic 7 (exp(sQs)) fixed. The nontrivial isotropic
variations are generated by the linear span of Si, —(S:+S3)/2,
—(S4+.S5) /212, — (S¢+.S7)/2Y2 and 89/ds.=o is given respectively by

[Sl’ QG] = Qy,

[—(S2 + $3)/21, Qs] = Qs,

[— (S + S5)/2'72, Q6] = Q1o

[—(Ss + S7)/2172, Qs] = Qs

with corresponding constants of integration oy =c;0;, j=1, 12, 3, 7
respectively, where ¢; are constants.
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