QUASI-PERIODIC SOLUTIONS OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH SMALL DAMPING

BY MARCELLE FRIEDMAN

Communicated by F. John, December 15, 1966

A function f(t) is called quasi-periodic if it can be represented in the form

$$f(t) = F(\omega_1 t, \omega_2 t, \cdots, \omega_m t)$$

where $F(\theta_1, \dots, \theta_m)$ is a continuous function of period 2π in θ_r , $\nu=1, \dots, m$. The numbers $\omega_1, \dots, \omega_m$ are called the basic frequencies of f(t). We shall denote by $A(\omega_1, \dots, \omega_m)$ the class of all functions f for which F is real analytic. For simplicity of notation we set $\theta=(\theta_1, \dots, \theta_m)$ and $\omega=(\omega_1, \dots, \omega_m)$ (then $A(\omega_1, \dots, \omega_m)=A(\omega)$ and $F(\theta_1, \dots, \theta_m)=F(\theta)$).

The purpose of this note is to study the family of complex systems of differential equations:

(1)
$$\dot{z} = \lambda z + \epsilon f(t, z, \bar{z}),$$

$$\dot{\theta} = \omega$$

parametrized by λ , f analytic in z, \bar{z} , and $f \in A(\omega)$ —i.e. $f(t, z, \bar{z}) = g(\theta, z, \bar{z})$ where g is 2π -periodic in θ —to determine the complex numbers, λ , for which there exists a solution $z = \phi(t, \epsilon) \in A(\omega)$.

For Re $\lambda = 0$ there may be no solutions even in the linear case

(2)
$$\dot{z} = \lambda z + \epsilon g(\theta),$$

$$\dot{\theta} = \omega$$

because of resonance. It is well known that if Re $\lambda \neq 0$ and $\epsilon > 0$ is small compared with $|\operatorname{Re} \lambda|$ then (1) always has a solution $z = \phi(t, \epsilon) \in A(\omega)$. This was shown by Malkin [7] and Bohr and Neugebauer [4] in the linear case and by Stoker [10] and, in the general case, by Bogoliubov [1].

Our main interest is $|\operatorname{Re} \lambda|$ small compared to ϵ . We shall describe a domain, Ω , in the λ -plane such that for each $\lambda \in \Omega$ the corresponding system (1) has a solution $z = \phi(t, \epsilon) \in A(\omega)$. We call Ω a nonresonance domain. We will show that Ω contains in particular $|\operatorname{Re} \lambda| > 1$ (this

¹ This system is derived from the second order equation $\ddot{x}+c\dot{x}+ax=f(t, x, \dot{x})$ (f quasi-periodic in t) by the transformation $z=\dot{x}+\alpha x$ for some constant α .

corresponds to the above-mentioned result of Bogoliubov) and in the remaining strip consists of a collection of closed sets each connecting the two half planes which we will call Ω_+ and Ω_- . (See Figure 1.) Moreover, the complement of these closed sets has small measure, independent of ϵ .

We set $(\omega, k) = \sum_{\nu=1}^{m} \omega_{\nu} k_{\nu}$ where the k_{ν} , $\nu = 1, \dots, m$ are integers, and $|k| = \sum_{\nu=1}^{m} |k_{\nu}|$. If we assume that g is analytic for |z|, $|\bar{z}| < r$, $|\operatorname{Im} \theta| = \sum |\operatorname{Im} \theta_{\nu}| < 1$ and that |g| < 1, then

THEOREM. If $|(\omega, k)| \ge c_0^{-1} |k|^{-\tau}$, $c_0 > 1$, $\tau > m$, then there exists $\epsilon_0 = \epsilon_0(m)$ such that for $\epsilon \le \epsilon_0$ there exists a closed, connected set, $\Omega = \Omega(\epsilon)$ in the λ -plane such that for the corresponding system

(1)'
$$\dot{z} = \lambda z + \epsilon g(\theta, z, \bar{z}),$$
$$\dot{\theta} = \omega$$

has a solution

$$z = \phi(t, \epsilon) \in A(\omega).$$

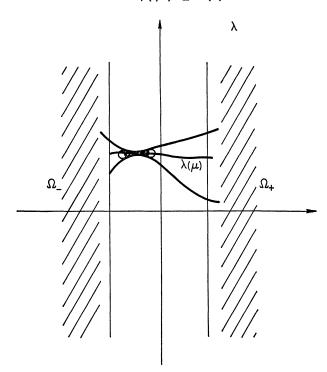


FIGURE 1

The set Ω contains the half planes Ω_+ and Ω_- . The latter two sets are connected by infinitely many cusp-like domains bounded by curves with one point of contact. The quasi-periodic solutions are stable or unstable according as λ lies to the left or right of the contact point.

It should be noted here that although Ω depends on ϵ and g the measure of the complement is small independent of the perturbation. This implies that for most choices of λ the system (1)' has a solution $\in A(\omega)$.

The complement of Ω is not empty even in the linear case. This can be seen as follows:

We find a solution z of the linear problem by means of Fourier series. Substituting in $\dot{z} = \lambda z + \epsilon g(\theta)$ we obtain the following equations for the Fourier coefficients z_k of z:

$$\{i(\omega, k) - \lambda\}z_k = \epsilon g_k.$$

For Re $\lambda=0$, $|i(\omega,k)-\lambda|$ can be arbitrarily small since $\omega_1, \dots, \omega_m$ are rationally independent. To prevent this we must restrict the choice of λ . If we require that λ satisfy the inequality $|i(\omega,k)-\lambda| \ge \gamma^{-1}$ for some constant $\gamma>1$, we find that all pure imaginary λ are excluded. However, if we weaken the condition to

$$|i(\omega, k) - \lambda| \geq (\gamma |k|^{\tau})^{-1}$$

where $\gamma > 1$, $\tau > m$, we find that the measure of the excluded set on any line parallel to the imaginary axis is proportional to γ^{-1} and decreases as $|\text{Re }\lambda|$ increases. Hence there are pure imaginary λ for which $\dot{z} = \lambda z + \epsilon g(\theta)$ has a formal solution z (convergence is assured if $g(\theta)$ is sufficiently differentiable).

The proof of our theorem is divided into two steps. The first and main step will consist of finding a family of curves, Γ , in the λ -plane such that for the corresponding differential equation we can

- (i) construct quasi-periodic solutions belonging to $A(\omega)$,
- (ii) transform the linearized equation (linearized on these solutions) into constant coefficients.

If $|Re \lambda| > 1$ we can easily use the contraction principle on the iteration scheme

$$z_0 = 0,$$

$$\dot{z}_{n+1} - \lambda z_{n+1} = \epsilon g(\theta, z_n, \bar{z}_n)$$

and show convergence for $\epsilon/|\operatorname{Re} \lambda|$ sufficiently small. (This is essen-

1967]

tially the technique of Bogoliubov [2], Stoker [10], and Malkin [7].) Our main interest, however, is for $|\text{Re }\lambda|$ small. Here we need the "rapid convergence" technique of Kolmogorov [5], [6], Arnol'd [1], and Moser [8]. More precisely, we proceed as follows.

We construct a quasi-periodic transformation $z = \zeta + v(\theta, \zeta, \overline{\zeta}, \lambda)$ taking (1)' into

$$\dot{\zeta} = \mu \zeta + \phi(\theta, \zeta, \overline{\zeta}, \mu) = \mu \zeta + \theta(|\zeta|^2),$$

$$\dot{\theta} = \omega$$

where μ satisfies

$$|(\omega, k) - j_0 \operatorname{Im} \mu| \ge (\gamma |k|^{\tau})^{-1},$$

 $\gamma > 1, \quad \tau > m, \quad |k| \ne 0, \quad j_0 = 0, 1, 2.$

This provides a quasi-periodic solution $z=v(\omega t, 0, 0, \lambda) \in A(\omega)$ on a nondenumerable set of curves connecting Ω_+ and Ω_- .

In the second step of the proof, in order to enlarge the domain we must give up the requirement that the linearized equation be transformable into constant coefficients. For every μ with Re $\mu\neq 0$ using a contraction argument we can ensure the existence of a solution $z\in A(\omega)$ if λ is sufficiently close to the above determined curves, $\lambda=\lambda(\mu)$. It suffices to take $|\lambda-\lambda(\mu)|< c|\operatorname{Re}\mu|^2$. This determines for each curve in Γ a parabolic neighborhood (see Figure 1) with point of contact at Re $\mu=0$.

It should be noted here that the point of contact need not be on Re $\lambda=0$. However, for reversible systems $(g(\theta, z, \bar{z})) = [-\bar{g}(-\theta, -\bar{z}, -z)]$ it was shown by Moser [9] that all contact points lie on Re $\lambda=0$.

Bibliography

- 1. V. I. Arnol'd, Small divisors and stability problems in classical and celestial mechanics, Uspehi Mat. Nauk SSSR 18, ser. 6 (114), (1963), 81-192. (Russian)
- 2. N. N. Bogoliubov, On some statistical methods of mathematical physics, Izv. Acad. Nauk SSSR. 1945. (Russian)
- 3. ——, On quasi-periodic solutions in nonlinear problems of mechanics, Lectures held at the First Mathematical Summer School, Kanev, 1963, Akad. Nauk, Ukrain. SSSR, 1964.
- 4. H. Bohr and O. Neugebauer, Über lineare Differential-gleichungen mit konstanten Koeffizienten und fast-periodischen rechter Seite, Nachr. Akad. Wiss. Göttingen, Math. phys. Kl 1926, pp. 8-22.
 - 5. A. N. Kolmogorov, Dokl. Akad. Nauk. SSSR 98 (1954), 527-530.
- **6.** ——, General theory of dynamical systems and classical mechanics, Vol. 1, pp. 315-333, Proc. Internat. Congress of Math., Amsterdam, 1954, Amsterdam: Nordhoff, Amsterdam, 1957.

- 7. I. G. Malkin, Some problems in the theory of nonlinear oscillations, State Publishing House, Moscow, 1956.
- 8. J. Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci., U.S.A. 47 (1961), 1824–1831.
- 9. ——, Combination tones for Duffing's equation, Comm. Pure Appl. Math. 18 (1965), 167-181.
 - 10. J. J. Stoker, Nonlinear vibrations, Interscience, New York, 1950, pp. 235-239.

SETON HALL UNIVERSITY