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A function ƒ(t) is called quasi-periodic if it can be represented in 
the form 

f(t) = Ffaxt, ù)2t, • • • , COmt) 

where F(0it • • • , 0m) is a continuous function of period 2T in 0V1 

v = 1, • • • , m. The numbers wi, • • • , œm are called the basic frequen­
cies of ƒ(/). We shall denote by Afai, • • • , o)m) the class of all func­
tions ƒ for which F is real analytic. For simplicity of notation we set 
0=(0i, • • • , 0m) and w=(coi, • • • , o)m) (then i4(a>i, • • • , com)=4(w) 
and F(0X, • • • ,ftn) = F(0)). 

The purpose of this note is to study the family of complex systems 
of differential equations: 

z = \z + €ƒ(/, 2,2), 

parametrized by X, ƒ analytic in z> z, and /£ -4 (Û>)—i .e . ƒ(/, 2, 2) 
= g(0, 0, 2) where g is 27r-periodic in 0—to determine the complex 
numbers, X, for which there exists a solution z=<j>(t, e)ÇzA(co).1 

For Re X = 0 there may be no solutions even in the linear case 

n. * = Xs + €g(fi), 

6 = 0) 

because of resonance. I t is well known that if Re X5*0 and e > 0 is 
small compared with | Re X| then (1) always has a solution z=<f>(t, e) 
£-4(o>). This was shown by Malkin [7] and Bohr and Neugebauer 
[4] in the linear case and by Stoker [lO] and, in the general case, by 
Bogoliubov [ l ] . 

Our main interest is | Re X| small compared to e. We shall describe 
a domain, Q, in the X-plane such that for each X£fl the corresponding 
system (1) has a solution z=<j>(t, e)£^4(co). We call Î2 a nonresonance 
domain. We will show that Q contains in particular | Re X| > 1 (this 

1 This system is derived from the second order equation %-\-cx-\-ax~f(t, x, x) 
(ƒ quasi-periodic in t) by the transformation z=*x+ax for some constant a. 
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corresponds to the above-mentioned result of Bogoliubov) and in the 
remaining strip consists of a collection of closed sets each connecting 
the two half planes which we will call Œ+ and fi_. (See Figure 1.) 
Moreover, the complement of these closed sets has small measure, 
independent of e. 

We set (co, k) = X X i covkp where the kVi v = 1, • • • , m are integers, 
and \k\ = X X I \kv\» If we assume that g is analytic for | z \ , \z\ <r, 
| l m 0 | = ] C | l m 0 „ | < l and that |g | < l , then 

THEOREM. If | (co, k)\ àc^ 1 |& |~ r , Co>l, r>my then there exists 
€o = e0(ra) such that for egeo there exists a closed, connected sety Q = Q(€) 
in the \-plane such that for the corresponding system 

(1)' z = \z+eg(d,z,z), 

Ô = co 

has a solution 

z = <t>{t, e) G A(o>). 

FIGURE 1 
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The set Q contains the half planes £2+ and Q_. The latter two sets are 
connected by infinitely many cusp-like domains bounded by curves 
with one point of contact. The quasi-periodic solutions are stable or 
unstable according as X lies to the left or right of the contact point. 

I t should be noted here that although 0 depends on e and g the 
measure of the complement is small independent of the perturbation. 
This implies that for most choices of X the system (1)' has a solution 

The complement of 0 is not empty even in the linear case. This 
can be seen as follows: 

We find a solution z of the linear problem by means of Fourier ser­
ies. Substituting in z=\z+eg(6) we obtain the following equations for 
the Fourier coefficients zk of z: 

{i(o)9 k) — X}z* = 6gk. 

For Re X = 0, \i(oo, &)—X| can be arbitrarily small since coi, • • > , œm 

are rationally independent. To prevent this we must restrict the 
choice of X. If we require thatX satisfy the inequality | i(o)y k) —X| ^y~1 

for some constant 7 > 1 , we find that all pure imaginary X are ex­
cluded. However, if we weaken the condition to 

| *(«,*) - X | â (71 A h " 1 

where 7 > 1 , r > m , we find that the measure of the excluded set on 
any line parallel to the imaginary axis is proportional to 7""1 and de­
creases as I Re X| increases. Hence there are pure imaginary X for 
which z=\z+eg(d) has a formal solution z (convergence is assured if 
g(d) is sufficiently differentiate). 

The proof of our theorem is divided into two steps. The first and 
main step will consist of finding a family of curves, T, in the X-plane 
such that for the corresponding differential equation we can 

(i) construct quasi-periodic solutions belonging to A(œ), 
(ii) transform the linearized equation (linearized on these solu­

tions) into constant coefficients. 
If I Re XI > 1 we can easily use the contraction principle on the 

iteration scheme 

20 * 0, 

Zn+l — XZn+1 =*= €g(0, «n, 2») 

and show convergence for e/ | Re X| sufficiently small. (This is essen-
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tially the technique of Bogoliubov [2], Stoker [lO], and Malkin [7].) 
Our main interest, however, is for | Re X| small. Here we need the 
"rapid convergence" technique of Kolmogorov [5], [6], Arnol'd [ l ] , 
and Moser [8]. More precisely, we proceed as follows. 

We construct a quasi-periodic transformation z~Ç+v(d, f, f, X) 
taking (1)' into 

r = tf+ *(*,r,?,M) = /tf + 0(|r|2), 
Ô = CO 

where ju satisfies 

| (« ,*) - ioIm M | ^ ( Y N * ) - 1 , 

7 > 1, r > m, I * | 5* 0, y0 = 0, 1, 2. 

This provides a quasi-periodic solution z = v(œt, 0, 0, X)E^4(co) on a 
nondenumerable set of curves connecting Œ+ and Q_. 

In the second step of the proof, in order to enlarge the domain we 
must give up the requirement that the linearized equation be trans­
formable into constant coefficients. For every fx with Re /x^O using 
a contraction argument we can ensure the existence of a solution 
zÇzA(o)) if X is sufficiently close to the above determined curves, 
X=X(/x). I t suffices to take jX — XCM) | <C\ R e M| 2- This determines for 
each curve in V a parabolic neighborhood (see Figure 1) with point 
of contact a t Re fi = 0. 

I t should be noted here that the point of contact need not 
be on Re X = 0. However, for reversible systems (g(0, z, z) 
= [—g(—0, —z, —z)]) it was shown by Moser [9] that all contact 
points lie on Re X = 0. 
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