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A function f(¢) is called quasi-periodic if it can be represented in
the form

f@) = F(wit, wat, * + + , wml)

where F(y, + - -, 0,) is a continuous function of period 27 in 6,,
v=1, . - -, m. The numbers wy, - - -, w, are called the basic frequen-
cies of f(t). We shall denote by A (w1, - - -, wa) the class of all func-
tions f for which F is real analytic. For simplicity of notation we set
0=, - -,0,) and w= (w1, * - -, wn) (then A(wy, + + +, wn) =4 (w)
and F(f,, - - -, 0.) = F()).

The purpose of this note is to study the family of complex systems
of differential equations:

=X+ o0, 23),

b =w

M)

parametrized by A, f analytic in 2, 2, and fEA4 (w)—i.e. f{t, 2, )
=g(0, 2, ) where g is 2mw-periodic in 6—to determine the complex
numbers, \, for which there exists a solution z2=¢(t, ¢) S 4 (w).!

For Re A=0 there may be no solutions even in the linear case

%= Az -+ g(0),

b=0w

2

because of resonance. It is well known that if Re A5%0 and ¢>0 is
small compared with I Re )\I then (1) always has a solution z2=¢(¢, €)
€ A4 (w). This was shown by Malkin [7] and Bohr and Neugebauer
[4] in the linear case and by Stoker [10] and, in the general case, by
Bogoliubov [1].

Our main interest is | Re M| small compared to e. We shall describe
a domain, ©, in the A-plane such that for each A& the corresponding
system (1) has a solution 2=¢(¢, €) €4 (w). We call Q a nonresonance
domain. We will show that @ contains in particular |Re A\| >1 (this

1 This system is derived from the second order equation %4-ci-+ax=f(, x, %)
(f quasi-periodic in £) by the transformation z=%-ax for some constant a.
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corresponds to the above-mentioned result of Bogoliubov) and in the
remaining strip consists of a collection of closed sets each connecting
the two half planes which we will call 2, and Q_. (See Figure 1.)
Moreover, the complement of these closed sets has small measure,
independent of e.

We set (w, k) = D™, w,k, where the k,, v=1, - - - , m are integers,
and |k| =2 ™, |k|. If we assume that g is analytic for |z|, || <7,
[Im 6] = >0|Im 6,] <1 and that |g| <1, then

THEOREM. If | (o, k)] gcgll k[ -, ¢co>1, 7>m, then there exists
€o=¢o(m) such that for € S, there exists a closed, connected set, 2=Q(e)
in the N-plane such that for the corresponding system

1y 5 =M+ €0, 2, 2),
=
has a solution

2= 0 ¢ € A(w).
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The set Q contains the half planes Q. and Q.. The latter two sets are
connected by infinitely many cusp-like domains bounded by curves
with one point of contact. The quasi-periodic solutions are stable or
unstable according as \ lies to the left or right of the contact point.

It should be noted here that although © depends on € and g the
measure of the complement is small independent of the perturbation.
This implies that for most choices of A the system (1)’ has a solution
€4 (w).

The complement of @ is not empty even in the linear case. This
can be seen as follows:

We find a solution z of the linear problem by means of Fourier ser-
ies. Substituting in £ =Az-+€eg(f) we obtain the following equations for
the Fourier coefficients 2; of z:

{i(w, ) — N}z = egs.

For Re A=0, ]i(w, k) —?x] can be arbitrarily small since wy, - * + , Wn
are rationally independent. To prevent this we must restrict the
choice of \. If we require that X satisfy the inequality |i(w, &) —\| =y
for some constant y>1, we find that all pure imaginary A are ex-
cluded. However, if we weaken the condition to

li(w, &) = | 2 (v| B[

where y>1, 7>m, we find that the measure of the excluded set on
any line parallel to the imaginary axis is proportional to 4~! and de-
creases as |Re \| increases. Hence there are pure imaginary \ for
which z=Az+e€g(0) has a formal solution z (convergence is assured if
g(®) is sufficiently differentiable).

The proof of our theorem is divided into two steps. The first and
main step will consist of finding a family of curves, T, in the A-plane
such that for the corresponding differential equation we can

(1) construct quasi-periodic solutions belonging to 4 (w),

(i1) transform the linearized equation (linearized on these solu-
tions) into constant coefficients.

If |Re \| >1 we can easily use the contraction principle on the
iteration scheme

20 = 0,
é7l+1 - )‘zﬂ+1 = Eg(e’ Zn,y 27‘)

and show convergence for ¢/| Re A| sufficiently small. (This is essen-
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tially the technique of Bogoliubov [2], Stoker [10], and Malkin [7].)
Our main interest, however, is for |Re A| small. Here we need the
“rapid convergence” technique of Kolmogorov [5], [6], Arnol’d [1],
and Moser [8]. More precisely, we proceed as follows.

We construct a quasi-periodic transformation z={+v(, ¢, §, N\)
taking (1)’ into

¢ =ut+ 606,88 w) = ut+6(] ]2,

b=0w
where u satisfies

I(w,k)-—jolmul 2 ('Y‘klf)—l)
y>1, r>m, |k| %0, jo=0,1,2.

This provides a quasi-periodic solution z=v(wt, 0, 0, \) E4(w) on a
nondenumerable set of curves connecting Q; and Q_.

In the second step of the proof, in order to enlarge the domain we
must give up the requirement that the linearized equation be trans-
formable into constant coefficients. For every u with Re u>0 using
a contraction argument we can ensure the existence of a solution
2EA4 (w) if N\ is sufficiently close to the above determined curves,
A=A(u). It suffices to take |)\-—)\(,u)] <c| Re u|2 This determines for
each curve in I' a parabolic neighborhood (see Figure 1) with point
of contact at Re u=0.

It should be noted here that the point of contact need not
be on Re A=0. However, for reversible systems (g0, 2z, 2)
=[—g(—0, —2, —2)]) it was shown by Moser [9] that all contact
points lie on Re A=0.
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