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1. Introduction, Let G be a finite group, Z the ring of rational 
integers, and form the Grothendieck ring K°(ZG) of the integral group 
ring ZG. Swan [4] has described multiplication in K°(ZG) when G is 
cyclic of prime power order. The purpose of this note is to present 
results which describe multiplication in K°(ZG) when G is cyclic or 
elementary abelian. Full details will appear elsewhere. 

Let Q denote the rational field, and recall that the elements of 
K°(QG) are Z-linear combinations of symbols [M*], where ikf* ranges 
over all finitely-generated left ÇG-modules, and similarly for K°(ZG). 
We define a ring epimorphism 0: KQ(ZG) ->K°(QG) by 0[M] 
= [Q®z Af], and call any linear mapping ƒ: K°(QG)-^K°(ZG) such 
that 0 /=l a lifting map for K°(ZG). Since the Jordan-Holder Theo­
rem holds for QG-modules, K°(QG) is the free abelian group with 
basis { [Mf]: l'èiSm), where {Mf: l^i^rn} is a full set of non-
isomorphic irreducible QG-modules. Swan [4] has shown that to 
describe multiplication in KQ(ZG) it suffices to describe the products 
f[Mf] -f[Mf]t for 1 gijgm, and f[Mf]x, for 1 £igm and *Gker 0. 

2. Statement of results. Let G be cyclic of order n with generator 
g. For each s dividing n, fs will denote a primitive 5th root of unity, 
and Z8 will denote the ZG-module Z[Ç8] on which g acts as f8. Sim­
ilarly, Qs will denote the ÇG-module Q(f,). Then K°(QG) is the free 
abelian group with basis {[<?.]: * |»} , and ƒ: K°(QG)-*K°(ZG) by 
f[Q*] — [^«] ls a lifting map. Swan [4] has shown that ƒ is a ring 
homomorphism. Also, for each 5 dividing n, G8 will denote the quo­
tient group of G of order 5, and if t\ 5, N8/t will denote the norm from 
Q* to Qt. By the results of Heller and Reiner [2], 

ker 0 = { £ ([A8] - [Z.]): -4, - Z8-ideal in Q8 

THEOREM 1. Multiplication in K°(ZG) is given by the formula 

[ZGr]([A.] - [Z.]) - £ ([N.,AAJZd] - [Zj), 

/or allr, s dividing n, where s' = s/(r, s) and d ranges over all divisors of 
[r, s] such that ([r, s]/d, 50 = 1. 

• 

92 



MULTIPLICATION IN GROTHENDIECK RINGS 93 

THEOREM 2. If G is an elementary dbelian group, multiplication in 
K°(ZG) can be explicitly determined. 

We remark that it is possible to give formulas which describe 
multiplication in K°(ZG) when G is elementary abelian. These form­
ulas will not be included here. 

3. Proof of Theorem 1. We first suppose that r = pa
t for some prime 

p and nonnegative integer a, and write s—p*', (pt t) = l. If a = 0 or 
6 = 0, the theorem is trivial. Let Ê — Zs/A8 and for each / dividing s, 
let Ê(ft) denote the ZG-module Ê on which g acts as f* reduced modulo 
A8. It suffices to find M~ZGP°®Z Z. Since ZG/SZ[x]/(x*>a--l), 
M&jt[x]/(x**-X). If a^b, then in Ê[x], x*°-l = J[k (x-fj»), 
l = f e^£ a , and thus I = E i ( f ® ) . A calculation with norms now 
yields the desired result. If a>b, then xpa — 1 factors in Ê[x] as fol­
lows; * * - i = n * ( * - ? £ ) n < j ( * * " - & ) . w h e r e i ^ * ^ . &+i 
SiSa, and 1 SjSpb with (£, j) = 1. Therefore 

^ ^ E £<?£>>+ E (ZpU/A8ZpU){Uilk 

where (ZpU/AiZpiùiïpïp**) denotes the ZG-module ZpU/AsZpU on 
which g acts as ?J'?P'*. Again, a calculation with norms will yield the 
desired result. This proves the theorem for the case r = pa. The general 
case follows by the use of induction on the number of distinct prime 
divisors of r. 

4. Proof of Theorem 2. In order to prove Theorem 2, we need 
several lemmas. 

LEMMA 1. Let G be an abelian group, F an algebraic number field 
which is a splitting field for G, and R the ring of algebraic integers of F. 
Then multiplication in K°(RG) can be explicitly determined. 

Let G be an elementary abelian group and write G = GiX • • • XG*, 
where G» is cyclic of order p with generator gif for 1 ~ i = fc. Let f be a 
primitive pth root of unity, F=Q(Ç), jR = Z[f], and denote by 
F(ai, • • • , ak) the FG-module F on which gi acts as fa», where 
ISaiSpior l^i^k. Similarly, if A is any i?-ideal in F, A(a\% • • • ,a&) 
will denote the jRG-module A on which gi acts as fa*. Note that, by 
restriction of operators, F(ai, • • • , au) and A (au • • • , a*) are QG-
and ZG-modules, respectively. It is easy to prove that the QG-
modules of form F(p, • • • , p, 1, %+i, • • • , a*,), where l ^ j = fe, to­
gether with the trivial module Q, form a full set of nonisomorphic 
irreducible QG-modules. 

Define t: KQ(ZG)->K°(RG) by $[Y] = [R®JK F], where R®z Y 
is an JRG-module with action of R given by r'(r®y) = r'r®y, for all 
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r'ÇzR* and action of G given by g(r ®y)~r ®gy> for all g £ G . Sim­
ilarly, define 77: K\QG)-*K«(FG) by *[F*] ~ [ i ^ o 7*]. 

LEMMA 2. ̂  öwd rç are ring homomorphisms and the following diagram 
commutes and is exact: 

SB 
0 > ker BR > K°(RG) > K«(FG) > 0 

u n e u 
0 > ker 6z > K°(ZG) —^-> K°(QG) > 0 

Î 
0 

Let $p(x) denote the cyclotomic polynomial of order p. If we apply 
^ to [A(p, • • • , py 1, aMi • • • , a*>]eJK:o(ZG), we note that *p(gy) 
annihilates J ? ® z i ( ^ , • • ' , |>, 1, a ;+t, • • • , a*). Since *<p(x) splits 
into linear factors in R[x], this gives us a composition series for 
R®z A(p, • • - , p, 1, fly+i, • • • , ajb). If we denote by A^ the ideal 
conjugate to A under the Q-automorphism of F which takes f into 
f ', we thus obtain 

LEMMA 3. $[A(j>t • • • , p, 1, a m , • • • , a&>] = J ] , [-4 <*><£, • • • , 
£, t, taj+i, • • • , /a*)], wÂere l â £ ë i £ - - l . 

We now use the formulas for ker dz and ker OR obtained by Heller 
and Reiner [2], and our formula for \[/[A(p, • • • ,p, l,#y+i, * • • »#*)], 
to show that \f/: ker 6Z—>ker ou is monic. Lemma 2 then implies that 
x[/:K0(ZG)-*Ko(RG) is monic. Now define fR: K°(FG)-*K°(RG) by 
/iî[jP(ai, • • • , a*,)] = [J?(ai, • • • , a&)]. I t is clear that JR is a lifting 
map for K°(RG), and it is easy to show that /R is a ring homomor-
phism. Since $ is monic, we may define fz^&^fRV. Then fz is a lifting 
map for K°(ZG) and is a ring homomorphism. Finally, since F is a 
splitting field for G, multiplication in K°(RG) is known by Lemma 1, 
and hence multiplication in K°(ZG) can be explicitly determined by 
the use of the monomorphism \p. This completes the proof of Theo­
rem 2. 
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