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1. Introduction. In [ l ] , the actions of the 1-parameter subgroups 
on coset spaces of certain types of Lie groups were studied with re­
gard to various properties occurring in topological dynamics. A cen­
tral question was to determine when these actions were minimal and 
distal. By a considerable use of various structure theorems of Lie 
groups, it was shown that if the Lie group is connected simply-
connected and nilpotent, and the subgroup is discrete and syndetic, 
then the action of any 1-parameter subgroup is always distal [l, IV, 
Theorem 3]. Moreover [l, IV, Theorem 5], the action is minimal for 
those 1-parameter subgroups induced by elements of a comeager sub­
set of the Lie group. In this paper, we use only the properties of topo­
logical groups and various results in topological dynamics to general­
ize the first result. Moreover, we show that the second result can be 
formulated more generally in the setting of a topological group, and 
we recover the result in an alternate way. 

Let (X, T) be a transformation group. A subset A of T is {left) 
syndetic if there is a compact subset K of T such that T = AK. A 
point x of X is transitive if cl(xT) = X. If some point of X is transitive, 
then (X, T) is a point-transitive transformation group. If every point 
of X is transitive, then (X, T) is a minimal transformation group. If 
X is a uniform space and x, 3>£X, then x and y are proximal provided 
that for every index a of X there exists t(ET such that (xt, yt)^a. 
The transformation group (X, T) is distal if every pair of distinct 
points of X is not proximal. As a general reference for these notions, 
see [2]. 

Let G be a topological group and let H be a subgroup of G. Then 
H\G will denote the space of right cosets of H in G. The coset trans­
formation group of G induced by H is the transformation group 
(H\G, G) with action (Hf, g)-+Hfg. 

Throughout this paper, G will denote a topological group, and H 
will denote a (left) syndetic closed subgroup of G. We will utilize 
right-handed functional notation. 

1 These results form a part of a doctoral dissertation written at Wesleyan Uni­
versity under the supervision of Professor W. H. Gottschalk. During this period, 
the author held a National Science Foundation Cooperative Graduate Fellowship. 
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2. A general criterion for distal. A crucial remark to the proof of 
the main result is the following: 

(2.1) REMARK. Let (X, T) and (Y, T) be transformation groups with 
compact uniform phase spaces X and Y. Let f be a transformation group 
homomorphism from (X, T) onto (F , T). For all 3>£F, let P(y) be 
the period of Y at y. Suppose that ( F, T) is a distal and pointwise pe­
riodic transformation group. Suppose further that for all 3>GF, (yf~l, 
P(y)) is a distal transformation group. Then (X, T) is a distal trans-
formation group. 

(2.1) roughly states that we can enlarge the phase space and still 
maintain a distal action. 

Let K be & subgroup of G. Then K is subnormal in G, denoted by 
K<l<\Gf if there exists a finite sequence (Ko, K\, • • • , Kn) of sub­
groups of G such that K = KQ<lKi<l • • • <\Kn==G. 

We now state the main result of this section. 

(2.2) THEOREM. Let H<\<\G. Then (H\G, G) is a distal transforma­
tion group. 

Since it is well known (see [4, Theorem (6.4.10)]) that every sub­
group of a nilpotent group is subnormal, we immediately obtain: 

(2.3) COROLLARY. Let G be a nilpotent group. Then (H\G, G) is a 
distal transformation group. 

I t is easy to see that if (X, T) is a distal transformation group, then 
every subgroup of T also yields a distal action on X. Thus, [l, IV, 
Theorem 3] is an immediate corollary of (2.3). 

3. The existence of point-transitive, and minimal distal subgroups. 
Let T be a topological group. Let if be a subgroup of G. Let 6 be a 
topological group homomorphism of T into G. Then the coset trans­
formation group induced by 6 is the transformation group (K\G, T, it(6)) 
with action (Kg, t)T(6)=Kg(tO). Let Hom(7\ G)=[d\0: T->G is 
a topological group homomorphism from T into G], provided with 
its point-open topology. Then Horn (T, G) [covers] [continuously 
covers] G if there exists a [map] [continuous map] d: G—*lïom(T, G), 
where g-^d01 such that for all gGG, gÇzT9g. Such a map 0 is called a 
[covering] [continuous covering] choice function. 

Using a Baire category argument, we can show: 

(3.1) THEOREM. Let G be a locally compact second countable group, 
let Kbea subgroup ofG, let Tbea topological group, let 0: G—»Hom(r, G), 
where g—*6g, be a continuous covering choice function, and letfÇzG. Sup-
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pose that for every nonvacuous open subset U of G, G = cl(Kf(Ugeu T6g)). 
Then for almost all gGG (i.e., for g in a comeager subset of G), Kf is a 
transitive point of (K\G, T, 7r(0ö)). 

Let Z be the additive group of all integers. Let g £ G. Then </>g: Z-^G 
is the topological group homomorphism defined by ncj>g = gn. If A CG, 
then A* will denote the set UgeA Zcf>g. 

By using the cannonical continuous covering choice function 
$ : G—»Hom(Z, G), where g—></>ö and applying (2.2), (3.1) yields: 

(3.2) THEOREM. Let G be a locally compact second countable group, 
let T be a topological group, and let 0: G—>Hom(jP, G), where g-+0g, 
be a covering choice function. Suppose that H<\ <\ G. Suppose further 
that there exists f ^G such that for every nonvacuous open subset U of G, 
G = cl(HfU*). Then: 

1. For almost all gÇzG, (H\G, Z, 7r(<t>g)) is a minimal distal trans-
formation group. 

2. For almost all gGG, (H\G, T, 7r(00)) is a minimal distal trans­
formation group. 

Now let G be a connected simply-connected nilpotent Lie group, 
and let H be discrete. I t is known [3] that the exponential map is a 
homeomorphism. If R denotes the additive group of all real numbers, 
let 0: G—>Hom(i?, G) be the covering choice function induced by the 
1-parameter subgroups. I t follows by [l, Lemma, pp. 55-56] that for 
every nonvacuous open subset U of G, G = HU*. Then [l, IV, Theo­
rem 5 and Corollary] is a consequence of (2.3) and (3.2). 

Complete proofs of these results will be given in a future paper. 
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