THE HITTING CHARACTERISTICS OF A STRONG MARKOV PROCESS, WITH APPLICATIONS TO CONTINUOUS MARTINGALES IN \mathbb{R}^n

BY G. E. DENZEL

Communicated by M. Loeve, July 11, 1966

- 1. Introduction. M. Arbib showed in [1] that, essentially, on the real line a continuous path process with the same "hitting characteristics" as a diffusion was itself a diffusion (strong Markov process). His methods did not lend themselves to more general processes. The purpose of this note is to give a general characterization along this line, for right continuous, nonterminating, quasi-left continuous strong Markov processes with left limits, taking their values in a locally compact, noncompact second countable space E. We also give some interesting consequences concerning continuous martingales in R^n . Full proofs of these and related results will appear elsewhere.
- 2. Hitting characteristics. Let \hat{X} be a process as above, described by measures \hat{P}^x $(x \in E)$ on the space of paths (assume that the function $x \to \hat{P}^x(A)$ is Borel measurable for all Borel $A \subset E$, and that \hat{P}^x $(X_0 = x) = 1$). Let F_t be the σ -field generated by the path functions X_{\bullet} $(s \leq t)$, and let F_R^+ be the σ -field of the stopping time R $(A \in F_R^+)$ if $A \cap \{R < t\} \in F_t$ for all t). Another process X, described by a measure P on the same path space, will be said to have the same hitting characteristics as \hat{X} if

(H1)
$$E[T_{\overline{G}}c \circ \theta_R \mid F_R^{\dagger}] = \hat{E}^{X_R}[T_{\overline{G}}c] \quad \text{P-a.s.},$$

(H2)
$$E[I_B \circ X_{T\overline{G}^c} \circ \theta_R \mid \overrightarrow{F}_R^+] = E^{X_R}[I_B \circ X_{T\overline{G}^c}] \quad \text{P-a.s.}$$

for every stopping time R, Borel set $B \subset E$, and open set $G \subset E$ with compact closure $(T_{\overline{G}_n}^o)$ is the first hitting time of the complement of the closure of G, and θ_R is the shift by R).

We write μ for the distribution of X_0 under P.

THEOREM 1. If X and \hat{X} have the same hitting characteristics as described above, and if there is a sequence of sets $G_n \nearrow E$, G_n open with compact closure, such that $x \rightarrow \hat{E}^X [T_{G_n}^c]$ is a bounded function on E, then $P = \hat{P}^{\mu}$ —i.e., X is a strong Markov process.

The existence of the sets G_n follows whenever \hat{X} is, say, a Feller

process.¹ The proof of Theorem 1 is by standard techniques from the theory of Markov process.

3. Consequences. Arbib used his theorem to generalize Levy's martingale characterization of Brownian motion [2] to other diffusions on the real line. We similarly use ours to obtain the following theorem.

THEOREM 2. If (X_t) is a process in \mathbb{R}^n such that $(h \circ X_t)$ is a continuous local martingale for every spherical harmonic polynomial h, and if $|X_t|^2/n-t$ is a continuous local martingale, then (X_t) is a Brownian motion.

Dambis [3] proved that on the line any continuous martingale (X_t) with $X_0 = 0$ was equivalent to a continuous random time change of Brownian motion. Using a slight generalization of his methods, and our Theorem 2, we obtain the following result.

THEOREM 3. If (X_t) is a process in \mathbb{R}^n with $h \circ X_t$ a continuous local martingale for every spherical harmonic polynomial h, and if $X_0 = 0$, then (X_t) is equivalent to a continuous random time change of Brownian motion.

A slightly weaker version of this last result was obtained by Dubins and Schwarz [4] and by Kunita and Watanabe [5], both using much different techniques. The latter paper also contains a different proof of Theorem 2.

REFERENCES

- 1. M. Arbib, Hitting and martingale characterizations of one-dimensional diffusions, Z. Wahrsch. 3 (1965), 232-247.
- 2. P. Lèvy, Processus stochastiques et mouvement Brownien, Gauthier-Villars, Paris, 1948, p. 78.
- 3. K. E. Dambis, On the decomposition of continuous submartingales, Teor. Verojatnost. i Primenen. 10 (1965), 438-448. (Russian)
- 4. L. E. Dubins and Gideon Schwarz, On continuous martingales, Proc. Nat. Acad. Sci. 53 (1965), 913-916.
- 5. Hiroshi Kunita and Shinzo Watanabe, On square integrable martingales, Privately communicated preprint, 1966.

DARTMOUTH COLLEGE

¹ (On a space E such that $\hat{P}^x[T_{K^c} < \infty] > 0 \forall x \in E$, compact $K \subset E$. This might be called the "natural" state space.)