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The theory of utility in the social sciences dates back to studies 
of Daniel Bernoulli, and can be considered as an at tempt to extend 
the ideas of the calculus of variations into the realm of economics. 
One approach to utility theory consists of deriving a real-valued util­
ity function from a simple system of non-linear partial differential 
equations, obtainable empirically from economic data. This point of 
view has been developed for over a century and has been studied 
recently for equations with continuously differentiable coefficients 
by Samuelson [6] and Hurwicz and Uzawa [4]. In this paper we 
consider the case of "kinked" coefficients i.e. Lipschitz continuous 
but not necessarily everywhere continuously differentiable (a not 
unrealistic situation in economic behaviour). 

Mathematically our results extend a classical theorem of Fro-
benius (see [2, Chapter VI]) . More specifically, we generalize the 
work of Nikliborc [5], Thomas [s] and Tsuji [9] by using the ap­
proach to generalized differentiation as found in Serrin [7]. Our 
methods also extend to spaces of infinite dimensions in which case 
we can obtain results useful in the study of the time evolution of 
economic systems. An (alternative) axiomatic approach to utility 
theory has been studied in recent years by von Neumann and Mor­
genstern [lO], Herstein and Milnor [3], and others. I t is a pleasure 
to thank Professor L. Hurwicz for suggesting this problem and for 
invaluable help with its study. This research was partially supported 
by the grants NSF GP 3904 and AFOSR 883-65. 

1. Statement of the problem for finite dimensional commodity 
spaces. Let x = (xi, • • • , xn) and p = {pi, • • • , pn) be vectors in Rn 

and Rn respectively with real nonnegative entries. Denote by (p, pn+i) 
and (x, y) vectors in RnXRx and RnXR1* Then we make following 
usual definitions of mathematical economics: 

(a) A demand function f(p, m) is a mapping of Rn X i?1—>]RW X S 1 

which satisfies the identity: 

(P> 1) 'f(Pf m) = m for all (p, m) G Rn X R1 

where the dot denotes the usual scalar multiplication in (n+1) di­
mensions. Economically this identity means: (i) an (n + l)st com-
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modity, viz. money, is chosen as a standard and the prices of other 
commodities are expressed relative to this standard, (ii) if we set 
f (Pi w) = CA> * * • » fn)y then ƒ(£, m) is uniquely determined by f(p, m). 

(b) For fixed (p, m), the budget set 

BPtm = {(*, y) | (*, y) G Rn X R\ (p, 1)(*, y) ^ m}. 

(c) A utility function U(x, y) is a real-valued continuous function 
defined on RnXR1 such that for each (p, m)maxBp,m U(x, y) is at­
tained a t (x, y) ~J(p, m). 

I t is the object of this work to determine conditions on f(p, m), 
(assumed given), that guarantee the existence of such a utility func­
tion. We proceed in the following way: In order to solve an initial 
value problem for a given system of nonlinear partial differential 
equations, we find a unique solution for an associated integral equa­
tion. Under suitable conditions, this solution is shown to satisfy the 
given differential equations. Here we require a result on the validity 
of the chain rule for generalized derivatives. The utility function is 
then constructed following a procedure of Hurwicz and Uzawa [4]. 
This construction is then extended in a straightforward manner to 
spaces of infinite dimension. 

2. On the validity of the chain rule for generalized differentiation. 
P = (Pu • ' • > Pn) stands for a point in Rn, while m stands for a real 
number; (p, m) is a point in jRn+1. We define the two projection maps 
TTp, ir™ b y 

*p[(P, m)] = P> Trn[{p, m)] = m. 

DEFINITION. Let M(p) be a locally summable function defined al­
most everywhere on Rn. We say that M(p) is C.L. if the distribution 
derivatives of M(p) are measures and M(p) is equal almost every­
where to a function M(p), where, for each index i, M(p) is continuous 
in pi for almost all values of the remaining variables. 

We further say that M(p) is A.C.L. if M(p) is C.L. and its distri­
bution derivatives are functions. In both cases we denote the abso­
lutely continuous part of the derivative vector-valued measure by 

A function is A.C.L. if and only if it is strongly differentiable and 
obviously every Lipshitz function is A.C.L. If we call a function 
whose distribution derivatives are measures, weakly differentiable, 
then the class of functions which are C.L. is a class lying between the 
weakly and strongly differentiable functions. These functions have 
been studied extensively by Goffman (see [ l]) . 
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THEOREM 1. If Çl is a measurable subset of Rn, M(p) is C.L. and 
measure M(Q) = 0, then M,p(p) = 0 ax. on 0. 

The above theorem generalizes a known result for the case when 
M(p) is A.C.L. and M{p) is constant on ti. 

THEOREM 2. If 

(i) f(p, m) satisfies a Lipshitz condition on Rn+1, 
(ii) There exist Borel sets (P and 2iïl contained in Rn+l such that 

w-meas. 7rp((P) = 1-meas. wm(M) = 0, 

— (p, m) exists except on (P. 
dp 

df(p, m) exists except on (PU 9TC, 

(iii) M(p) is {C.L./A.C.L., then f (p, M(p)) is {C.L./A.C.L.} and 

f(P, M(p))t9 = ^ (fc Af(*)) + - - (p, M(p))M,p(p) a.e. 
dp dm 

where we take 

— (p, M(p))MlP(p) = 0 wherever M ,p(p) = 0. 
dt 

Note that condition (ii) is fulfilled if ƒ is a Lipshitz function which is 
independent of p. 

The above theorem can easily be generalized to the case where 
M(p) assumes values in Rm. 

3. The system of differential equations. We consider the system of 
partial differential equations 

(1) gradM(^) =f(p,M) 

with initial condition M(p0) = M0 and we look for a solution on the 
portion of Rn where p ^ 0 . The following conditions on f(p, m) are 
relevant: 

(A) The conditions (i) and (ii) of Theorem 2. 
(B) Sij^Sji except on (PUSiïl, where 

Sij = 1 ƒ/. 
dpj dm 

(BO Sij = Sji except on (P, where we have set 
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Of 
= 0 on 2HZ. 

dm 

THEOREM 3. If (A) and (B) hold and in addition f (p, m)?*0 except 
on (P then (1) has a unique continuously differentiable solution. 

If (A) and (B') hold then (1) has a unique continuously differentiable 
solution. 

4. Construction of a utility function. Before proceeding to a state­
ment of the existence theorem, we consider the following additional 
hypothesis on f(p, m) : 

(C) The matrix (Sij) is negative semidefinite except on (P\JWL. 

THEOREM 4. If f(p, m) satisfies (C) together with one of the two sets 
of conditions given in Theorem 3 then a utility function, U(x, y), de­
fined on the range off(p, ni) exists. 

To construct such a utility function we modify a procedure of 
Hurwicz and Uzawa [4]. Consider the system (3) and its unique 
solution with the initial condition M(po) = M0, which we denote 
M(p;po, Mo). Then for fixed p0ÇERn, we define the utility function for 
each (x, y) in the range of f(p, m) as follows 

UPo(x,y) = M(p,:f-\x,y)). 

Here J"*1^, y) denotes any point (p\ m') such that f(p'f m') = (#, y). 
The uniqueness of the solution of (3) guarantees the existence of a 
point Mo such that M{po\j~1{x, y))=M(p0\ po, M0). 

5. Utility functions in an infinite dimensional commodity space. 
Let x be a reflexive Banach space over the reals with conjugate space 
denoted x*« Let B be a continuous bounded possibly nonlinear map­
ping from x+—*X* s u c n that (x, Bx)>0 (x^O), where x+ and x+ are 
positive cones. 

Let the budget set Bx = {x*\ (x, x*) g (x, Bx)} where(#, x*) denotes 
the inner product of x £ x + and x*£x*« 

DEFINITION. A utility functional U(x*) is a real-valued continuous 
mapping X% —+R1 such that for each x£x+* n i ax^ U(x*) is attained 
at Bx. 

We now determine abstract conditions on B that guarantee the 
existence of such a functional. 

DEFINITION. An operator Bu is derivable from an indirect utility 
functional <j>(x) if the Gateaux derivative of <j>(x) in the direction v 
is (v, Bx) for every fl£x-
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LEMMA 3 (AN INTEGRABILITY CONDITION). B is derivable from the 
indirect utility function <j>(x) if and only if the following identity holds 
for each x, y (Ex 

(I) f (x B(sx))ds- f (y,B(sy))ds= \ (x-y, B(y+s(x-y)))ds. 
J o J Q «/ o 

Furthermore we can set <j)(x) — fl(x, B(sx))ds. 

We now impose the following condition on B : 
(II) Monotonicity (u—v, Bu — Bv)^0, with equality only if u—v, 
(III) If un—>u weakly in % a n d Bun—>Bu strongly in %°> t n e n 

Un-^u strongly. 
(IV) B"1 is a bounded operator, (where defined). 

THEOREM 4. Let the operator B satisfy the conditions I, II , I I I , IV, 
then a continuous utility functional Z7(x*), defined on the range of B, 
exists. 

Indeed we may define 

U(x*) — ko— I (x, B(sx))ds 
Jo 

where x* =Bx, and k0 is a positive constant. 
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