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1. We extend the convolution transformation [1]
) Fa) = [ 5066 - na

to certain classes of generalized functions. Since a variety of integral
transformations are, through changes of variables, special cases of
(1) [1, pp. 65-79], our present results yield a generalization and in-
version theory for these integral transformations, many of which had
not previously been extended to generalized functions.
The kernel G is a probability frequency function of the type
G(,:) 1 10 est i
= — ——ds
2rid _iw E(s)

where in this work E(s) is restricted to the form

E(s) = e H(l - i) exp(s/ax),
k=1 ay;

b and a;, being real numbers (ax50, ax— ), and D> ai2< . G(f) is
said to be in Class I if there exist both positive and negative a;, in
Class 11 if all a4 are positive and Y ai'= », and in Class III if all
ax, are positive and Y ail< .

By a smooth function we mean a function that has continuous
derivatives of all orders at all points of its domain.

2. Here we describe a theory that is suitable for every kernel G
whether in Class I, 11, or III. Let ¢ and @ be two fixed real numbers,
and let k,4(f) be a fixed smooth positive function such that

ect 1<t< o,
e,alt) = edt —o <t < —1.

1 This work was supported by the Air Force Cambridge Research Laboratories,
Bedford, Mass., under contract AF19(628)-2981.
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£,,4 is the topological linear space of all complex-valued smooth func-
tions ¢(f) on — © <¢< « such that for each k=0, 1, 2, - - -

7i(#) = max  sup [ ka(D$PO)| < w,

p
0595k —0<t<®»
de¢

(») = —

#0() ==,
the topology of &£, being that generated by the sequence of norms
{fy,,}f,l. £..q is a sequentially complete countably normed space [2,
p. 6].
For a given kernel G(£), let
ay = max (a;, — ), az = min (g, ©).
a<0 ap>0

For every fixed x and nonnegative integer k, G®(x —t) as a function
of tisin £.,qif ¢ <ap and d>ay; this is apparent from the asymptotic
behavior of G(f) [1, pp. 108-109]. In this case, every member of the
dual space £/, of £,4 possesses a convolution transform, which we
define as the application of fE L, to G(x—1) EL,,a:

@) Fl@) = (f®), Gx — 1)) —o <z < o,

Every distribution of bounded support is a member of £/;, and every
member of £/; is a distribution on — « <¢< w. Also, if d<0<c,
then every tempered distribution is a member of £/,.

TueorReM 1. Given a kernel G, let fE L], where c<op and d>ay.
Then, F(x)E L. where a and b are any real numbers such that
a<min(—a1, —c) and b> max(—oap, —d). Moreover,

3) F®(x) = (f@), G®(x — 1)) k=1,2,3---.

To prove (3) we use an inductive argument, in which we consider

-51* [FED(x + Ax) — FED(@)] — (f), GP(x — 1)) = {f(®), 0a:(0)),
X

1
02:() = —— [64V (& + A — 1) = G& Dz — )] — GV ~ )
X

and prove that 6,,(t)—0 in £,,4 as Ax—0. Then, F(x) is shown to be
in £,,5 by invoking the following standard result: There exist a con-
stant C and an integer » =0 depending on f such that

| Ka,5(x) F ® (x) l =< C max sup l ke,a(t)ka, (%) GEH (x — ) ‘ .
0OsSpsr ¢
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The right-hand side can be shown to be a bounded function of x by
exploiting the asymptotic behavior of G(¢) [1, pp. 108-109].

The real inversion formula of Hirschman and Widder [1, p. 128]
can be extended to our generalized transformation (2) as follows.
Let {b,,};fgl be a given sequence of real numbers such that b,—0 as
n— . With D=d/dx and a being a real number, let the operational
symbol e*? F(x) denote F(x+a). Set

" D
P,(D) =exp((b — b.)D) kI—Il(l — Zc) exp(D/ax).

THEOREM 2. Under the hypothesis of Theorem 1, let F(x) be defined
by (2). Then, in the sense of weak convergence in the space D' of Schwariz
distributions (3],

lim P,(D)F = f.

This is established by first showing that for any smooth function
Y(x) of bounded support

(Po(D)F, ¥) = (f(t), @ (), Pa(D:)G(x — 1))),

d
D, =—
dx

and then proving that {(x), P.(D,)G(x—1£))—y¥ () in £,4 as n— .

3. These results can be strengthened when the kernel G is in either
Class I or Class I11. Indeed, the class of generalized functions, which
possess convolution transforms (2), can be enlarged, but now (2) will
exist in general only on an interval of the form y;<x < « where y;
depends on f. Results similar to Theorems 1 and 2 can be established
in these cases in essentially the same way as above.
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