
ON AUTOMORPHISMS OF ALGEBRAIC GROUPS1 

BY DAVID J. WINTER 

Communicated by G. D. Mostow, February 10, 1966 

Automorphisms of Lie algebras over fields of characteristic 0 have 
been investigated by Borel-Mostow, Jacobson, and Patterson (see 
[l]> [4], [5]). This note describes some results in [ó] of related in­
vestigations of automorphisms of algebraic groups over fields of arbi­
trary characteristic. 

In the following discussions, G is a connected linear algebraic 
group over an algebraically closed field of characteristic 0 or p. <r 
and r are (birational) automorphisms of G. The connected com­
ponent of the identity of the group of fixed points of a is denoted by 
FG(<T). 

a acts on the algebra R(G) of representative functions of G. <r is 
said to be algebraic if the orbit of each element of R(G) under the 
cyclic group generated by a spans a finite dimensional subspace of 
R(G). 

An algebraic automorphism cr is said to be semisimple (unipotent) 
if the induced transformation on R(G) is semisimple (unipotent). If 
a is algebraic, a has a unique decomposition cr — <r8(ju where cr8, au are 
commuting algebraic automorphisms which are respectively semi-
simple and unipotent. If G is semisimple, every (birational) automor­
phism of G is algebraic (see [2], §17-07). 

If a is an algebraic automorphism of G, then there is a linear alge­
braic group K containing G as a closed normal subgroup and an ele­
ment 5 in K such that a is the restriction to G of the inner automor­
phism Ad 5. If <r is a semisimple (unipotent) algebraic automorphism 
of G, 5 may be taken to be semisimple (unipotent) ; and such a cr may 
be regarded as a semisimple (unipotent) element of K by identifying 
<T with such an 5. On the other hand, elements c, r of K are sometimes 
regarded as automorphisms of G in the following discussions. (The 
above follows easily from results in [3].) 

THEOREM 1. Let a and r be semisimple elements of a linear algebraic 
group K containing G as a closed normal subgroup. Suppose that <sG 
=TG. Let H be a Cartan subgroup of Fo(a), L a Cartan subgroup of 
FQ(T). Then there exists an element g in G such that g"xHg = L and 
g-1crHg = rL. 

1 The work described here was done on a National Science Foundation Fellowship 
and is part of a dissertation directed by Professor George Seligman and presented for 
the degree of Doctor of Philosophy in Yale University. 
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SKETCH OF PROOF. By regarding G as a transformation group on 
aG (an element g in G sending ax in aG into g~~laxg in aG), it can be 
shown that the set {g~laxg\gÇzG, #£()#} is a dense épais subset of 
aG, provided that 0# is a dense épais subset of H. Such an 0# can be 
chosen such that for h in 0#, H is the connected centralizer in G of 
ah8 where hs is the semisimple part of h. (This and the preceding 
fact are established by applications of a transformation group formu­
lation of Lemma 5, §6-11 of [2].) There is a similar 0L for (r, L). 
Since two dense épais subsets of aG have nonempty intersection, 
there exist gi, g* in G, h in 0# and / in 0L such that gr1o'hgi = grVZg^. 
Thus gr1ahsgi = g2'1Tlsg2 and taking connected centralizers in G, 
grlHgi = gf1Lg2. The assertions of the theorem follow immediately. 

THEOREM 2. Suppose that G is semisimple. Then if r keeps stable a 
maximal torus T and a Borel subgroup B containing T, FT(r) contains 
a regular element of G and is a Cartan subgroup of FQ(T). 

PROOF. The cyclic group A generated by r acts in the group T* of 
rational characters of T and keeps stable the subset S of fundamental 
roots of T with respect to B. Let m be the index in T* of the subgroup 
generated by S. Assume that dim G > 0 and let t be an element of T 
of finite order such that a(f) =f$(t) whenever a and j8 are elements of 
5 which lie in the same orbit under A. Then a(j(t)) =a(t) for a in S. 
Thus xm(r(t))=xm(t) for x in T*. Thus x(r(tm)) =x(*m) for x in T* 
and r(tm) =tm since T* separates points. The order of t (and hence of 
tm) can be taken to be arbitrarily large. Thus dim F r ( r ) sël. Let 
T\ = FT(T) and let Gi be the connected centralizer of Ti. G\ is reduc­
tive with maximal torus T and Borel subgroup BC\Gx (see [2]). Gi, 
r , and BC\G\ are r-stable. Thus if dim G ^ X ) , an application of the 
above argument shows that dim FTi(r)^l where r 2 = r P \ G i 1 ) . This 
is impossible since FTJj) C TiHGP and J i H G P is finite. Thus 
dim Gi1} = 0. Thus Gi=T and FT(T) contains a regular element of G. 
I t now is immediate that FT(T) is a Cartan subgroup of FQ(T). 

THEOREM 3. Let G be semisimple and let a be a semisimple (algebraic) 
automorphism of G. Let Tbe a maximal torus of G, B a Borel subgroup 
of G containing T. Then there exists g in G such that g~~lTg and g~~lBg 
are stable under a. FG(a) contains a regular element of G. 

PROOF. Regarding c a s a semisimple element of an algebraic linear 
group K containing G as a closed normal subgroup, choose a semi-
simple element r of aG such that Ad r keeps stable T and B (possible 
by the conjugacy of maximal tori and Borel subgroups under inner 
automorphisms). Then aG = rG and FT(T) is a Cartan subgroup of 
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FG(T) (Theorem 2). Thus letting H be a Cartan subgroup of FQ(<J), 
there exists g in G such that g~lFT(r)g — H and g"1rFT{r)g contains 
a (Theorem 1). For such a g, g~1Tg, g~~xBg are (r-stable since T, B are 
T-stable. An application of Theorem 2 now shows that FG(C) con­
tains a regular element of G. 

Theorem 3, along with Theorem 2 and the methods used in its 
proof, can be used to compute the rank of FQ(O) where a is a semi-
simple algebraic automorphism of a semisimple algebraic group G 
(the rank of FQ(O) corresponds to the index of "aG" in [4]). 

A straightforward consequence of the preceding theorem is 

COROLLARY 4. Let a be a semisimple algebraic automorphism of G. 
Then 

(1) a keeps stable a Borel subgroup of G\ 
(2) a keeps stable a maximal torus of G; 
(3) the centralizer in G of a maximal torus in FQ(<J) is solvable. 

R. Steinberg has independently proved part (1) of Corollary 4, 
using methods which require only that one assume that a be a bira-
tional automorphism of G. 

The proofs of the following two theorems will appear in a later 
paper. 

THEOREM 5. If a has only finitely many fixed points, then G is solva­
ble. 

THEOREM 6. Suppose that a has finite order n and that <x has only 
finitely many fixed points in G. Then a keeps stable precisely one maxi­
mal torus IV of G, and the fixed points of a are elements of Tff whose 
orders divide n. If n is prime, G is nilpotent. 
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