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1. Introduction. We will prove the following lemma and investi­
gate some of its implications: namely, a short proof by Goldberg [ l ] 
of the basic perturbation theorem of Kato [2], avoiding previous 
homotopy arguments; an extension of results of Trotter and Nelson 
[3] for semigroup generators; and a criterion for well-posed per­
turbed problems in spaces tha t are not necessarily complete. For 
further references and more information, see [ l ] , [2], and [3]. 

Throughout this paper all operators are linear with domains sub-
spaces of a normed linear space X and ranges subspaces of a normed 
linear space F. If an operator B perturbs an operator T, we assume 
tha t D(B)DD(T). 

In this section, the spaces need not be complete. 

LEMMA 1. Let T"1 and B be bounded operators with ||i3|| < | | r - 1 | | _ 1 . 
Then 

(1.1) dim F/Cl (R(T)) = dim F/Cl (R(T + B)). 

PROOF. 2 We use the known result (e.g., see [ l ] for a proof) that 
if H^MIr-1!]-1, then 
(1.2) dim F/Cl (R(T + B)) g dim F/Cl (R(T)). 

1 Partially supported by a NATO postdoctoral fellowship. 
2 Concerning this little result, let ||J3|| <a||r~1||~1. The author appreciates dis­

cussions with Dr. Seymour Goldberg, who proved it for a = 1/2 in his lectures. The 
main trick in the proof can be seen for the case a = 3/4. The author also appreciates 
the aid of Mr J. Kuttler in extending the result from « = 3/4 to a = 7/8. 



i966] A PERTURBATION LEMMA 335 

From (1.2) we see that the proof of (1.1) reduces to showing 

(1.3) dim F/Cl (R(T)) ^ dim F/Cl (R(T + B)). 

The trick in showing (1.3) is to perturb and unperturb T succes­
sively by fractions of B of just the right size, using (1.2) at each stage. 

We first note that ||J5|| <||r""1||""1 implies that there exists some 
integer n>0 such tha t | | B | | < [(2W-1)/2W]- jjX̂ —1||—x. We now let 
Ck = (2n~k)/(2n — 1) for & = 1, • • • , n. For convenience, we also let 
Co = 0. We now claim tha t 

(1.4) 

dim r / a ( * [ r + (x:,.)*]) 

dim r / a (*[r+ (£ • )* ] ) 

for each m = l, • • • , n. We use (1.2), with a perturbation by —cmB, 
to show tha t (1.4) holds, since 

(1 5) II-cmB\\ < [(2—)/(2" - 1)]• [(2» - 1)/2»]. | | r i"1 

= 2—|| r-1!!-1, 

and noting tha t £)*-o ch= [ 2 n / ( 2 n - l ) ] - \{2m-\)/2m], we have for 
xED(T) 

\\(T+(T>C')B>)X\ 
11 \ \ t-o / / I 

\\x\\ 
(1.6) !l " 

Bx\\ | | 2 ^ ^ / - \\JBa 
= NI \ = V IN. 
> [i - (2™- l j^-Hr-1!!-1 

= 2-Hlr-ll|-1. 

From (1.5) and (1.6) we have | | - c J 3 | | <\\(T+(J%=o ck)B)-'\\-\ 
which by (1.2) is sufficient for (1.4) to hold for each w = l, • • • , n. 
Combining these n inequalities then yields (1.3). 

2. Perturbation theory. In this section we assume that both X and 
Y are complete spaces. We first state some known definitions. 

An operator T is called normally solvable (n.s.) if it is closed and 
has closed range. If the kernel of T is closed, the minimum modulus 
is defined by y(T) =inîxeD(T),x$N(.T) [| |r*||/d(* f N(T))]. We also have 
the three indices a(T) =d im N(T), /3(T) =d im Y/R(T), and if either 
a < o o or j8< oo, K(T)=a(T)-P(T). 

Goldberg [ l ] has employed Lemma 1 to give a short proof of a 
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perturbation theorem of Kato [2]; roughly, that if T is n.s. and B is 
bounded and small, then T+B is n.s. and certain relations hold be­
tween the indices of T and those of T+B. We now state for future 
reference the known extended version of this theorem, wherein B is 
only required to be !T-bounded. 

THEOREM (PERTURBATION). Let T be n.s. and possess index K. Let 
B satisfy 

(2.1) \\Bx\\ ^ a\\Tx\\ +b\\x\\ 

for all xGD(T), where b+ay(T) <y(T). Then T+B is n.s., a(T+B) 
£a(T), (3(T+B) ^ jS(r) , and K(T+B) = K(T). 

To illustrate the role tha t Lemma 1 can play in such a context, 
we note tha t if T also possesses a bounded inverse and | | 5 | | <y(T) 
= || r - 1 ! ) " 1 , Lemma 1 states that 

(2.2) K(T) = - p(T) = - p(T + B) = K(T + B). 

3. Semigroup generators. We now prove the following: 

THEOREM 2. Let A be the infinitesimal generator of a contraction semi­
group on the Banach space X, and let B be a dissipative operator with 
D(B)Z)D(A). If there exist constants a and b, with a < l , such that f or 
all<t><ED{A), 

(3.1) 11̂ 11=̂ 11 A4 +b\\4, 
then A+B is the infinitesimal generator of a contraction semigroup. 

REMARK. The above result, as an extension of an earlier result by 
Trotter, is obtained by Nelson [3 ] under the additional condition tha t 
a < J . For definitions, references, and applications to the Schrödinger 
equation and semigroup generation, see [3]. For our purposes, we 
will use: (i) Nelson^ form of the Hille-Yosida-Phillips Theorem, char­
acterizing a densely defined operator T as the infinitesimal generator 
of a contraction semigroup if and only if it is dissipative and there 
exists Xo such tha t X>Xo implies that X is in the resolvent set of T; 
(ii) any dissipative operator T satisfies ||(X— T)<j>\\ =X||$|| for all 
<l>ÇiD(T) and all real X; and (iii) the dissipative operators form a 
convex cone. 

PROOF OF THEOREM 2. By the above remark, A+B is dissipative 
and (X — A —B)~l is continuous for any positive X. The remainder of 
the proof thus consists of showing the existence of some Xo such that 
for X>Xo, RÇK-A -B) =X. 
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We will first show tha t for a < | , Theorem 2 is a direct corollary 
of the above-stated perturbation theorem. Then by a device moti­
vated by Lemma 1, we will extend the result to a<l. 

Suppose a < § . Then for any operator A and positive X, 

(3.2) o||il*|| + ft||*|| ^ a\\(X - A)$\ + (AX + b)\\4\. 

NowletX>X 0 = max{Xo(^4), 6/(1— 2a)}. Then since A is dissipative, 

6' + ay(\ - A) = (oX + 6) + a||(X - A)'1^1 

< ( l - a ) X + a | | ( X - i l H h 

S (1 - 0)||(X - A)-i\\-i + a\\(\ - A)-i\\~i 

= 7(X - A), 

which by the perturbation theorem and A's properties yields that 

(3.4) R(X - A - B) = R{\ - A) = X. 

Suppose ^ g a < l . Then a < ( 2 m —l) /2 m for some integer m. Let 
a = 2m-1/(2m — 1) and note that a a < | . From (3.1) we have 

(3.5) a| |£*|| £ a a | | i l * | | + « f t | k | | 

and thus A +aB is the infinitesimal generator of a contraction semi­
group. From (3.1) we also have 

a\\B(j>\\ g aè 

(3.6) 
(* + •(£*>)>)*] 
la(g2-/)W|+< 

for fe = l, • • • , w - 1 . Since £ * : J 2-> = (2*- l ) / (2*- 1 ) , (3.6) gives 

( / /b-i \ \ M 

A +a[ T,2-nB)<t> +«6 | |* | | , 
\ y=o / / II 

which at each step yields [-4+a(]C*-o 2~*)B\ as an infinitesimal gen­
erator of a contraction semigroup, which for k — m — 1 is the desired 
result for A+B. 

COROLLARY 3. Under the conditions of Theorem 2, except with a<ai, 
c{A +dB) is the infinitesimal generator of a contraction semigroup f or all 
c^O and all O ^ d ^ l / a i . 

4. Well-posed problems. Since Lemma 1 holds for spaces that are 
not necessarily complete, it would appear to be useful in other ways, 
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such as the following inference of well-posed (uniqueness, stability, 
existence) perturbations from well-posed base problems. 

EXAMPLE 4. Let T~l and B be bounded, | | B | | < | | r - 1 | | - 1 , and R(T) 
= F. If R(T+B) is closed, then the equation 

(4.1) (T+ B)x = y 

is well-posed. 
PROOF. The uniqueness and stability follow from (1.6) when m = n 

there. The existence of a solution follows from (1.1) and R(T+B) 
closed, which imply tha t R(T+B) = Y. 

Although the main feature of the example is that the spaces need 
not be complete, we may observe tha t if X is complete, the conclusion 
of the example is 

(4.2) R(T + B) closed <=» T + B closed <=» well-posed (4.1) 

Furthermore, the hypotheses of the example imply tha t T is closed; 
hence if D(B) is closed, it follows that T+B is closed. 
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