
NORBERT WIENER AND POTENTIAL THEORY 

BY M. BRELOT 

1. Wiener did not work in potential theory for very long (only 
about two years around 1924), but that was enough to bring about in 
this field (the so-called classical potential theory), as in many others, 
some fundamental contributions: a definitive form of the generalized 
solution of the Dirichlet problem for a continuous given boundary 
function, the notion of capacity for general compact sets and the 
famous Wiener criterion of regularity. 

2. Already in 1923, he wrote with Phillips a paper [28]* on Nets and 
the Dirichlet problem where this problem was solved for a polycubic 
domain then for domains with smooth boundaries by a limit process 
from a problem for functions on a discrete net and a mean condition. 
This idea of using linear equations for a preliminary problem relative 
to finite differences, which is now a basic tool with computers for 
partial differential equations was not common forty years ago; I 
know only the previous example of Le Roux on harmonic functions 
in R2 (J. Math. Pures Appl., 1914). 

3. In pure potential theory, the first fundamental paper of Wiener 
[24] Certain notions in potential theory in January 1924 gave and 
studied a precise definition of a generalized solution and the first 
definition of capacity for an arbitrary compact set. 

For a long time, it was known that the classical Dirichlet problem 
does not always have a solution (case of an isolated boundary point of 
Zaremba, spine of Lebesgue) and there appeared more or less clearly 
the need to define a suitable generalized solution which always exists 
tha t would be later studied at the boundary; such a harmonic func­
tion corresponding to the given boundary function was in evidence 
in various methods, where further restrictions on the boundary al­
lowed to show that it was actually a solution (Poincaré, Zaremba, 
Lebesgue, Bouligand, Kellogg . . . ). But in a clearer and more strik­
ing way than the others, Wiener introduced for a bounded open set 
(and for a similar "exterior" problem) a precise generalized solution, 
that he studied further without restrictions: it was the limit of the 
classical solution for an increasing sequence of regular open sets 
fln C ö (Uön = fl) ("regular" means tha t there is always a solution for 
the classical Dirichlet problem) and a boundary function, given as 

* The bold-faced numbers in brackets refer to the numbered references in the 
Bibliography of Norbert Wiener. 
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the restriction on âfln of any finite continuous continuation of the 
given function ƒ on 3Q. This limit depends only on Q and ƒ, and is 
equal to the classical solution when the latter exists. 

Later an easy proof appeared by using the new tool of subharmonic 
function and an approximation of ƒ by means of a difference <j>x~<l>2 
of such functions in a larger QoDŒ, and considering the solutions in 
Qn for <f>i and fa, which are increasing. 

Wiener gave a rather complicated proof by considering an exterior 
problem relative to two compact sets and the respective boundary 
values 1 and 0 (at the point at infinity, the solution must tend to 0 
in Rn, w ^ 3 , or must be bounded in R2). Then he treated the more 
general case of n disjoint compact sets with constant values on them 
and tha t gave an approach to the general case where the boundary 
was replaced by n disjoint compact sets and a constant value on each 
one. 

This difficult argument led him to consider more deeply the ex­
terior problem with value 1 on the boundary of a given compact set 
K in Rn (n^3). Without the later representation of subharmonic 
functions by F. Riesz, the generalized solution was proved to be the 
newtonian potential of a measure JgO supported by K; the total mass 
was called the capacity of Ky the basic tool of potential theory that 
Wiener adapted in R2 and which has been so much used, studied and 
generalized. Moreover Wiener gave a sufficient condition of "regu­
larity," broader than any previous ones. (This notion for a boundary 
point x means tha t the solution tends to the given value at x0', the 
regularity of every boundary point means that the open set is regular.) 

4. Three months later, in [35], [36], he studied more deeply this 
notion of regularity, already characterized by Lebesgue and his 
"barrier." Wiener considered first in Rn (n^3) the set of C12 where 
the distance to x0 lies between X3* and \p+1 ( 0 < X < 1 ) . If yp is its 
capacity, the regularity is equivalent to the divergence of the series 
7 P / X P . This deep property (with an adaptation in R2) was difficult to 
prove, bu t became easier later with the help of advanced potential 
theory. This famous criterion was systematically used and later ex­
tended to the more general notion of thinness; it appeared to have a 
geometric character according to the geometric interpretation of 
capacity by Fekete-Pólya-Szegö. (However in modern axiomatics, 
the barrier, which has not this character, remains valid but not the 
Wiener criterion.) 

5. A third fundamental paper [39] was published in January 1925 
where Wiener compared his generalized solution with the method of 



NORBERT WIENER AND POTENTIAL THEORY 41 

Perron (published in Math. Z., vol. 18, where there is a quite similar 
and unknown paper of Remak). The method of Perron gave the 
classical solution (actually every time it exists) and Wiener proved 
that the function introduced by Perron, when considered before some 
complementary conditions make it the classical solution, was the 
generalized solution. The latter appears as the upper envelope of 
continuous subharmonic functions whose lim sup at the boundary 
minimize the given continuous data (and is a similar lower envelope). 
This remained valid with the further introduction of general subhar­
monic functions. This interpretation became the good definition and 
the first one a property of the generalized solution—with easy exten­
sion in the modern axiomatic theories. 

The classical problem became therefore a particular case, with 
smaller interest. 

6. Wiener could not leave aside the Dirichlet problem for a dis­
continuous boundary function. He was inspired by the Poisson-
integral and considered the continuation of the functional defined a t 
any # £ Q by the solution for a given ƒ on the boundary, when ƒ be­
comes discontinuous, i.e., the integral of ƒ with respect to the har­
monic measure. (See [39] and previously [24].) He thought of course 
of the identity of the Perron envelopes for large classes of ƒ. He surely 
also would have developed this point except for a simple counter­
example tha t the present writer discovered to be wrong IS years later 
(then the identity of the suitably defined envelopes was proved to be 
equivalent to the summability of ƒ with respect to the harmonic 
measure). 

In the papers I have just summarized, Wiener by mastering a diffi­
cult technique and introducing important tools initiated a new period 
for the Dirichlet problem and potential theory. We may be thankful 
for such an impulse tha t we may still appreciate 40 years later. 
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