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CASE INSTITUTE OF TECHNOLOGY 

ON THE EQUATION fn+gn~l 

BY FRED GROSS 

Communicated by Walter Rudin, July 23, 1965 

There is a close relationship between F e r m a i s last theorem and 
the family of solutions ƒ and g of the functional equation 

(1) xn + yn = 1. 

If, for example, SD denotes the class of all pairs (ƒ, g) of single 
valued functions ƒ and g meromorphic in a domain D and having the 
additional property that , for some z0 in JD, f(zQ) and g(zQ) are both 
positive rationals, then either, for w>2 , (1) has no solutions in SD or 
F e r m a i s last theorem is not true. 

In this note we discuss the solutions of (1) meromorphic in the 
complex plane. We shall call such solutions Mc solutions. 

THEOREM 1. For n = 2, all Me solutions are of the form 

(2) ƒ = and g(z) = . 

PROOF. This follows directly from a theorem on uniformization [ l ] . 
We need only note that for w = 2, (1) is of genus zero and that the 
rational solution (2), with f3(z) —z, maps the whole s-plane in a 1-1 
manner on the Riemann surface of (1). 

THEOREM 2. For n = 3, Mc solutions exist. One such solution is given 
by: 

ƒ = 4-i/e( s>')-i(i + 3-1/2.41/8 ^ 

g - 4~"«( i>)-i(l - 3-w-Vi* p), 

where & is a Weierstrass p-function. 
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PROOF. Tha t Me solutions exist follows from a theorem on uni-
formization [ l ] and the fact that when w = 3, (1) is of genus 1. The 
uniformization theorem assures the existence of elliptic solutions, 
but does not yield any simple method of constructing one. To prove 
tha t (3) is a solution we note that , with w = 3, (1) has solutions if and 
only if Fz — G2 = 1 has solutions. This follows by setting 
F = 3li2(f-g)/(f+g) and G = 41 '3/(f+g). The Weierstrass ^-function 
satisfies a differential equation of the form 

(4) (y')2 = 4;y3 - g2y - g,. 

When g2 and gz satisfy gl — 2 7 g ^ 0 , (4) is satisfied by a Weierstrass 
p-f unction whose periods depend on g2 and g$. Taking g2 = 0 and 
g3= 1, we get for a particular ^-function, that 

( £>')2 « 4 |>» - 1. 

I t follows that (3) is a solution. 
We know from the theory of uniformization [ l ] that, for w = 3, 

(1) has no rational solutions. I t is not known, however, what the 
most general solution is in this case. Thus we have 

CONJECTURE 1. For n = 3, the only Mc solutions are elliptic func­
tions of entire functions. 

Me solutions, for w = 3, exist only if (1— g3)1/3 is single valued; 
namely if the branch points 1, e2vilz and eMIZ are attained at any 
point either a multiple of 3 times or not at all. From the theory of 
Nevanlinna [2], using the notation of that theory, one sees that for 
any completely ramified value a, which is attained by ƒ at any point 
at least n times or not at all 

n - 1 
S(a; ƒ) ^ 

n 
Since 20(a; ƒ) g 2, it follows that there exist at most [2n/(n— 1)] 

completely ramified values with the property described above. Thus 
conjecture 1 is included in 

CONJECTURE 2. The only meromorphic functions having three 
completely ramified values with n è 3 are elliptic functions of entire 
functions. 

The above argument also gives us 

THEOREM 3. For w > 3 , Mc solutions do not exist. For n>2 entire 
solutions of (1) do not exist. 

The first part of the theorem also follows from Picard's uniform­
ization theorem, once we note that , for w > 3 , the genus of 1 is greater 
than 1. 
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The second part of the theorem can also be proved by more ele­
mentary methods [3]. 

Returning to the notation at the beginning of this paper we let C 
be the finite complex plane and set 

S* = {(n, n) | ƒ(*) = ru g(s) = r2; (ƒ, g) E Sc}, 

where ƒ and g are nonconstant and Y\ and r2 denote positive rational 
numbers. We shall say further that (x, y) is a solution of (1) if x 
and y satisfy (1). 

An immediate consequence of Theorem 3 can now be stated. 

COROLLARY 1. For n>2, any set of solutions SQS* is finite, 

Mordell's conjecture [4] that , for n>3 (1) has at most a finite 
number of possible rational solutions, is thus reduced to an interpola­
tion problem in the theory of meromorphic functions. For it would be 
sufficient to show that any infinite set of solutions of (1), with # > 3 , 
would have to be a subset of 5^. 

The author has also obtained some results on solutions mero­
morphic in a domain D. The problem of characterizing such solutions, 
however, is still open. 
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