
ON THE THEORY OF RANDOM SEARCH 
A. RÉNYI 

Introduction. The problems of search dealt with in this paper can 
be described by the following simple model. Let Sn be a finite set 
having n^2 distinguishable elements—called points—and suppose 
that we want to find an unknown point x of the set Sn; the set Sn it­
self is supposed to be known to us. Let us suppose further that it is 
not possible to observe x directly, however we may choose some func­
tions fiy f2, • • • , ƒ# from a given set F of functions defined on Sn, 
and observe the values fi(x), fcix), • • • , JN(X) taken on by these 
functions at the unknown point x. Of course if F would contain a 
function ƒ which takes on different values at different points, a single 
observation of this function would be sufficient. We suppose however 
that all functions ƒ belonging to the class F axe such that the number 
of different values taken on by ƒ is much smaller than n. (We shall 
be especially interested in the case when each ƒ £ F takes on only the 
two values 0 and 1 and n is a large number.) In such a case of course 
it is necessary to observe the value of a large number of functions ƒ 
at the point x. Each such observation gives us only partial informa­
tion on x (namely it specifies a subset A of Sn to which x must belong), 
but after making a fairly large number of such observations the in­
formation obtained accumulates and enables us to determine x. We 
want to find x by a not too large number of observations. We may 
e.g. suppose that each observation is connected with a certain cost 
(or tha t it requires a definite amount of time) and we want to keep 
the cost (or duration) of the whole procedure of search relatively 
low. We shall call a method for the successive choice of the functions 
/i> • • • i IN, which leads in the end to the determination of the un­
known x, a strategy of search. Obviously one usually tries to choose a 
strategy with N (the number of functions to be observed) as small as 
possible. Of two search procedures the one which has a smaller 
(average) duration is the better one, however there may be other re­
quirements. For instance a simple strategy which can e.g. be easily 
programmed on a computer is usually preferable to a complicated 
strategy. If A and B are two strategies such that A requires (in the 
average) the observation of a somewhat smaller number of functions 
than B (i.e. A is "better" than B) but the effective carrying out of A 
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requires much more work and time, then nevertheless B may be 
preferable to A from a practical point of view. 

A strategy will be called a pure strategy if it uniquely specifies the 
choice of the f unctions/i , /2 , • • • , JN and a mixed strategy if the choice 
of these functions depends to some extent on chance. A pure strategy 
will be called predetermined if the number N and the choice of each 
of the functions / i , • • • , JN is determined in advance, before begin­
ning the observations; it will be called sequential if only the choice of 
f\ is decided in advance and the choice of fk (k^2) is made only 
after observing fi(x), f^x), • • • , fk-i(x) and may depend on these 
observed values; in the case of a sequential (pure) strategy the num­
ber of observations N depends usually also on the value of x. 

Problems of search occur in practically every field of human activ­
ity. Typical examples are: medical diagnosis, chemical analysis, 
search for a failure in a complicated mechanism, search for a lost or 
hidden object, search for a mistake in a long series of computations 
or in a program for a computer, search for some bibliographical data, 
search for the root of an equation, the maximum of a function, the 
parameter of a probability distribution, etc. 

The theory of search should be considered—according to the 
author's point of view—as a chapter of information theory; this 
chapter of information theory is however not very far developed. 
Many interesting particular problems of random search have been 
investigated, but a systematic study of such problems has not yet 
been given. 

In §§1 and 2 of the present paper we deal with certain basic notions 
which are of importance in search theory (separating systems of 
functions, different notions of homogeneity of such systems) and with 
certain combinatorial questions connected with these notions. We 
deal with these questions in somewhat greater detail than needed in 
what follows, because these combinatorial questions are interesting 
in themselves too, and in view of other applications, to be given else­
where. In §3 we prove a few general theorems concerning the duration 
of search of random search procedures and shall show that in general 
these random search methods are almost as good as the best pure 
strategy, being at the same time usually much simpler. In §4 we give 
a few examples. 

1. Separating systems of functions. Clearly in order that there 
should exist a t least one strategy which leads to finding the unknown 
element x of Sn whatever it may be, it is necessary that the class F 
of available f unctions ƒ should be rich enough. Let us introduce the 
following definition : 
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(I) Let us say that a system F of functions defined on the set Sn is 
separating the elements of Sn {or f or the sake of brevity: is a separating 
system) if it has the following property: 

To any pair of different elements xi, x% (XZJ^XI) of Sn there exists in F 
a function ƒ such that ƒ (#2) ̂ /(tfi). 

Clearly if F is not a separating system, i.e. if there are elements 
X\ and #2 7**1 in Sn such that for each f(EF, f(x2) =/(xi), one never can 
decide whether the unknown element x of Sn which we want to find, 
is Xi or #2 by observing the values of functions ƒ G F at the point x. 
On the other hand if F is a family of functions on Sn separating the 
elements of Sn, then by observing f(x) for all ƒ S F x will be uniquely 
determined; thus there exists at least one successful strategy, namely 
the trivial one consisting in observing the value of f(x) one by one 
for all functions ƒ G F. 

Let F be a system of functions defined on the set Sn which separates 
the elements of Sn. We shall call F a minimal separating system of 
functions, if no proper subset of F does separate the elements of 5n. 

Another way to characterize separating systems of functions is the 
following. For each ƒ G F let us call the set 4 C 5 f t a level-set of ƒ if A 
contains all elements x of Sn for which f(x) =a, where a is any fixed 
value. Clearly the system F separates the elements of the set Sn if 
and only if the least algebra of sets containing all level-sets of all 
functions ƒ G F is identical with the algebra of all subsets of Sn. 

A third equivalent way of characterizing separating systems of 
functions is the following. To any set F of functions defined on the 
set Sn there corresponds a matrix M defined as follows: If the ele­
ments of the set Sn are ai, a2, • • • , an and F consists of the functions 
fu ƒ2, • • • , f m, the matrix M contains m rows and n columns and the 
£th entry of the jth row of M is fj(ak). Clearly F is separating the 
elements of Sn if and only if the column-vectors of the matrix M are 
all different. 

We shall prove now the following simple 

LEMMA 1. Let F be a minimal separating system of functions separat­
ing the elements of the finite set Sn having n elements. If m denotes the 
number of elements of F we have m^n — l. 

PROOF. The statement of Lemma 1 can be expressed also in the 
following way: if F is a system of functions separating the elements 
of the set Sn, and if the number of functions belonging to F is ^w, 
one can select from F n — 1 functions such that these selected func­
tions separate the elements of Sn. This statement is evidently true for 
n = 2, because clearly there must be in F a function which is not 
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constant on 52, and a single such function clearly separates the two 
elements of 52. 

Let us suppose that the statement of Lemma 1 holds for some 
n <z 2 ; we shall show that in this case it holds also for n+1. Let us de­
note the n + 1 elements of the set Sn+i by ai, #2, • • • , an+i. If the sys­
tem F separates the elements of the set Sn+u it separates a fortiori the 
n elements au • • • , an ; thus by supposition we can select from Fn — 1 
functions / i , ƒ2, • • • , fn-i which separate the elements au 02, • • • , a». 
Now let us consider the vector (/i(an+i), /zC^n+x), • • • , fn-i(an+i)) : 
if this vector is different from each of the n vectors (/i(ay),/2(ay), • • • , 
fn-\(p>j)) (ISj^n), then the n— 1 functions fi(x), • • • ,/n_i(#) sepa­
rate all elements of the set S»+i; if not, the vector (/i(an4-i), • • • , 
/n_i(an+i)) is identical with one (and only one) of the n different vec­
tors (A(ay), • • • , /n-i(ay)); suppose for instance that fi(an+i) =/i(ayt) 
for l£i£n — l. Then there is in F a t least one function ƒ such that 
f(dn+i) 7^f(djX because otherwise F would not separate an + i and a$x. 
But then the system of functions ƒ1, • • • , fn-u ƒ separates the ele­
ments of the set 5»+i. Thus Lemma 1 is proved by induction. 

The following example shows that the statement of Lemma 1 is 
best possible. Let Sn consist of the elements 0, 1, • • • , w — 1; let F 
consist of the n — 1 f unctions fi(x) (O^i^n — 2) defined as follows : put 

(1 if x = L 

t0 otherwise 

for 0^i^n — 2. Then F is a minimal separating system for the set Sn-
Let us consider some examples of separating systems. In all the 

following examples, if not otherwise specified, Sn is the set consisting 
of the elements 0, 1, • • • , n — 1. 

EXAMPLE 1. Fis the set of all 2n functions on Sn taking on only the 
values 0 and 1. 

EXAMPLE 2. Fk is the set of all (I) functions on Sn which take on 
the value 1 at k points and the value 0 at the remaining n — k points 

The set F is not minimal for 2^k^n — 2. In his lectures a t the 
University of Budapest, the author has proposed the question: to 
determine the least number N(n, k) for which there exists a separating 
system F of functions on Sn such that each ƒ G F takes on the value 1 
at k points and the value 0 at the remaining n — k points. The answer 
to this question is easy (and has been obtained independently by 
B. Bollobâs, J. Galambos, Gy. Katona, T. Nemetz and D. Szâsz) if 
n^k(k+l)/2 + i; in this case one has N(n, k) = { 2 ( n - l ) / ( * + l ) } 
where {x} denotes the least integer *zx. On the other hand if n is 
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even and k = n/2 one has clearly N(n, n/2) = {log n). To find an 
explicit formula for N(n> k) in general seems to be difficult; how­
ever Mr. Gy. Katona has obtained rather close lower and upper 
estimates for N(n, fe), which he will publish in a forthcoming paper. 

EXAMPLE 3. Suppose n — 2r. Let us represent each integer 
x (O^x^n — 1) in the binary number system: 

r-l 

where €&(#)=() or = 1 , and consider the system F[r] of functions 
€o(#), • • • , cr-i(x). Clearly the values e0(x), • • • , er_i(x) determine 
x uniquely; thus JFW is a (minimal) separating system for the set 

EXAMPLE 4. Let the matrix Mr,8 be defined as follows: Mr,8 con­
tains r rows and (J) columns, where () = $=>. Let each column of 
Mr,$ contain 5 ones and r—s zeros, and let all columns of Mr,8 be 
different; by other words the columns of Mr,8 are all possible se­
quences of r terms consisting of 5 ones and r — s zeros. Let fj(x) be 
equal to the #th element of t h e j t h row of Mr,8 (1 ûj^r; 1 ^x^Q). 
Then the functions / i , • • • , fr separate the elements of the set 
{1, 2, • • • , Q } . Evidently each row of Mr>8 contains (JlJ) ones and 
C71) zeros. Note that if we form from the matrices Mr,o, Mr,i, • • • , 
Mr,r a single matrix having r rows and 2r columns by putting the 
matrices Mr,8 side by side, we get the matrix of the minimal separat­
ing system of Example 3. 

Note that the separating system of functions having the matrix 
Mr,t is not minimal if r^2, 5 = 0, 1, • • • , r, however if l^s^r — 1 
and we omit any one of the functions from the separating system 
having the matrix Mr,8 we obtain a minimal separating system. 

Let us introduce in the set Sn a probability measure, by supposing 
that each element of Sn has the same probability 1/n. In this case 
each function ƒ(x) defined on Sn can be considered as a random vari­
able. If the set of values of f(x) taken on Sn is the set {yu • • • , yr) 
and f(x) takes on the value yj a t Kj different points of S„( X X 1 Kj = n) 
then the probability distribution of f(x) is given by 

(1.1) P(f(x) = y,) = - ' = P , 
n 

and the entropy of ƒ is 

(i.2) #a) = i>,iog-J-. 
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(Here and in what follows log denotes logarithm with base 2.) 
Now we prove the following simple 

LEMMA 2. If F is a system of functions separating the elements of the 
set Sn then 

(1.3) E^CO^logn. 
feF 

PROOF OF LEMMA 2. Let/i , /2, • • • , ƒ » , be all the functions belong­
ing to the set F, then the vector \[/(x) = (fi(x), • • • ,fm(x)) takes on 
different values for different values of # £ 5 » . Thus H(\f/) =log n. As 
it is well known that the entropy of the joint distribution of a se­
quence of random variables can not exceed the sum of the entropies 
of these random variables, we obtain (1.3) which proves Lemma 2. 
Note that there is equality in (1.3) if and only if the functions 
jfi, • • • , fmt considered as random variables, are independent. 

If for a separating system F there is equality in (1.3) we call F an 
optimal separating system. Clearly an optimal separating system is 
always minimal, but not conversely. 

The following remark shows the difference between these two no­
tions: if F= {/i, • • • , ƒ#} is a minimal separating system, then 
omitting one function—say fa—from F the remaining system 
{fu • • • » /K-I» /K+II * * * > ƒ#} is no more separating, i.e. there exist 
elements x\ and x^X\ of Sn such that fj{x\) =/,(x2) for j V K , 1 ^j g N. 
By other words, there exists an element x of Sn such that to find x 
we have to observe all functions ƒ,• belonging to F at the point x, 
i.e. the process of search is not always finished before making N ob­
servations. However if F is an optimal system, the process of search 
is never finished before making N observations; as a matter of fact 
if the random variables / i , • • • , ƒ# are independent (and none of 
them is constant) then by fixing the values of N— 1 among these 
functions, the remaining function takes on all its values under this 
condition too. It should be added that this property is necessary but 
not sufficient for F being an optimal system. For instance if the func­
tions of the system F are independent random variables with respect 
to some other probability measure on Sn different from the uniform 
measure, then F has the mentioned property, without being an 
optimal system. 

The minimal system of Example 3 is optimal, but the minimal sys­
tem of Example 4 (obtained by omitting any one of the functions of 
the system corresponding to the matrix Afr,«) is not optimal if 
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An optimal separating system F can clearly be characterized by 
saying that the partial informations obtained from observing differ­
ent functions ƒ belonging to F never overlap. Thus an optimal sepa­
rating system corresponds to a most economic strategy. The ratio 
log n/^2f<=F H(J) may be interpreted as the efficiency of the separat­
ing systems F. 

2. Different notions of homogeneity of a separating system of 
functions. In our investigations we do not suppose the existence of 
any algebraical, geometrical or topological structure in the set 5„, 
and we suppose further that we have no prior knowledge on the un­
known element x of S», i.e. that before we start the search all possi­
bilities x = aR (K = l, 2, • • • , n) have the same prior probability 
l/n. Accordingly it is natural to restrict ourselves to the case in which 
the separating system F of available functions ƒ is in some sense 
symmetrical with respect to the elements a^ of Sn. We shall define 
different sorts of symmetry of systems of functions. First we adopt 
the following definition : 

(II) A system F of functions f defined on the set Sn= {du a2t • • • ,aw} 
is called completely homogeneous, if denoting by w any permutation of 
the sequence 1, 2, • • • , n for any j'£ F the function g defined by 

gifli) =f(a*U)) 

belongs to F too. 
Let us consider some examples. The separating systems of Exam­

ples 1 and 2 are clearly completely homogeneous; but the systems of 
Examples 3 and 4 are not completely homogeneous. A system F of 
functions which is completely homogeneous and contains at least one 
function which is not constant is obviously a separating system. 

Let M denote the matrix corresponding to a separating system F. 
Clearly F is completely homogeneous if and only if by permuting in 
any possible way the columns of M we obtain a matrix M' which can 
be obtained from M also by a suitable permutation of the rows of M. 
Thus if F is a completely homogeneous system of functions separat­
ing the elements of the set Sn and the number of elements of F is m, 
then necessarily mèzn, because otherwise there would be more per­
mutations of the columns than permutations of the rows of the cor­
responding matrix M. As by Lemma 1 for a minimal separating sys­
tem m^*n — 1, it follows that a minimal separating system can never 
be completely homogeneous. 

Let us introduce now the following definition: 
(III) A system of functions F defined on the set Sn = {at, a%f • • •, an} 
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is weakly homogeneous of order K (2^K^n) if it has the following 
property: Let us choose K different elements a3v aiv • • • , a3-Kof Sn and 
let RK denote the number of functions f£ F such that 

Mû-Mu- •••=ƒ(%)• 
The RK does not depend on the choice of the elements ajv a3t1 • • • , a3K. 
We shall call the number RK the parameter of F. 

If a system F of functions is weakly homogeneous of order 2 and 
R2 <Ri where Ri is the number of elements of the set F (that is always 
true except the trivial case when F consists of constant functions 
only) then of course F is a separating system. 

We shall need also another property of homogeneity which is 
stronger than homogeneity of order K\ we call this strong homo­
geneity of order K and define it as follows: 

(IV) Let F be a set of f unctions f defined on the set Sn= {#i, a2, • • • , 
a»}. Let us suppose that the values of every ƒ £ F belong to a set Y 
= {yu ' • ' * yr}* We call the set F strongly homogeneous of order K if 
choosing any K different points a3v a32t • • • , a3K of Sn and any se­
quence of elements yiv • • • , yiK of Y {the yi.(i = l, 2, • • • , K) are not 
necessarily different) the number RK (yiv • • • , yiK) of those functions 
fÇzF for which 

/(flu) - vu (i - i, 2, • • • , K) 

does not depend on the choice of the points a3v • • • , a3K but it may de­
pend on the values yiv • • • , yiK. 

Evidently a strongly homogeneous set of order K is homogeneous 
of order K because we have 

RK = Z) RK(J, y, • • • , y). 
yeY 

It also is easy to see that if F is strongly homogeneous of order K 
it is strongly homogeneous of every order K' <K. For the weak homo­
geneity a similar statement does not hold. As a matter of fact every 
set F of functions ƒ defined on Sn is homogeneous of order n but not 
necessarily of order K<n. It can easily be shown that a completely 
homogeneous set F is strongly homogeneous of every order K. If each 
function f in F takes on only the values 0 and 1 and it takes on the 
value 1 at exactly k points, we can characterize F also as follows: to 
each function ƒ G F there corresponds the X-tuple of those numbers 
j (1 ûjûn) for which f(a3) = 1. Thus F can be represented by a se­
quence of A-tuples of the integers 1, 2, • • • , n. Now if F is strongly 
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homogeneous of order Kk this implies that any /-tuple of the in­
tegers 1, 2, • • • , n is contained in the same number r of these k-
tuples. Thus these fe-tuples form a balanced incomplete block design. 

EXAMPLE 5. Let F be the class of f unctions fK (K = l, 2, • • • , N) 
defined on the set Sn= {1, 2, • • • , n} and such that 

where the gj(k) ( l ^ j rgw) are functions defined on the space 0 
= { l , 2 , • • • , N} such that if we introduce a uniform measure on 0 
the g/s are equivalent (symmetrically dependent) random variables ; 
then F is strongly homogeneous of every order. 

EXAMPLE 6. Let n be arbitrary, r <n; let us form all possible (?) 
sequences consisting of r ones and n — r zeros, and let the matrix M 
of the family F consist of these rows. Then clearly F is strongly homo­
geneous of every order, because if ei, • • • , €K (K<n) is any sequence 
of l^K ones and K — l zeros (K^r, K — l^n — r) the number of rows 
of M which have €1, • • • , €R in the jist, jVid, • • • , jx th column is 

Now let us change the first row of M so that we replace every 1 by 
0 and every 0 by 1. Clearly the matrix M* so obtained is not strongly 
homogeneous of any order, but it is weakly homogeneous of every 
order. Evidently if the set of functions F* has M* as its matrix, for 
purposes of search F* and F are equivalent, because F differs from 
F* only in that ƒ1 has been replaced by 1 — jfi. This example shows that 
if F is a weakly homogeneous system of functions there sometimes 
exists an equivalent strongly homogeneous system; if we call two 
systems of functions F and F* equivalent if their elements being fK 

and fz (K = l, 2, • • • , N), for every K and every pair of points 
x, y of Sn fK(x)=fKiy) if and only if JK(X) =/JCy). However not 
every weakly homogeneous system is equivalent to a strongly homo­
geneous one, as is shown by the next example. 

EXAMPLE 7. The system of functions having the matrix 

1 1 0 0 

1 0 1 0 

1 0 0 1 

is weakly homogeneous of orders 2 and 3 but it is not equivalent to 
a strongly homogeneous system. The same holds if n — 2K is arbi­
trary and the rows of the matrix M of F are all possible sequences of 
K ones and K zeros starting with 1. 

EXAMPLE 8. The system of functions having the matrix 
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1 1 1 0 

1 1 0 1 

0 1 0 0 

0 1 1 1 

0 0 1 1 

is weakly homogeneous of order 3 but not of order 2. 
EXAMPLE 9. The set F having the matrix 

1 
1 

1 

0 

0 

0 

0 

1 
0 

0 

1 

1 

0 

0 

0 
1 

0 

1 

0 

1 

0 

1 
0 

0 

0 

0 

1 

1 

0 
1 

0 

0 

1 

0 

1 

0 
0 

1 

1 

0 

0 

1 

0 
0 

1 

0 

1 

1 

0 

is strongly homogeneous of order 2, weakly homogeneous of order 3, 
but not weakly homogeneous of order 4. In this example i?i = 7, 
i?2==:3, iv3 = 1. 

We introduce still one further definition : 
(V) A system of functions F is called homogeneous of order K if f or 

any partition K = K1+K2+ • • • +K9 of K the number RK \KUK^ • • •, 
K9] of those f Çz F for which 

/(*ii) = fan) = • " " = f(*iK 1) 

/ ( * 2 l ) = f(%22) = • • • = f(X2Kt) 

/(*«l) = ffai) = • ' • = f(x,K) 
does not depend on the choice of the points Xijfrom Sn provided they are 
all different. 

Clearly if F is homogeneous of order K it is also homogeneous of 
any order KK further it is weakly homogeneous of any order l^K. 
Conversely if F is strongly homogeneous of order K it is also homo­
geneous of order K. Thus the notion of homogeneity is intermediate 
between strong and weak homogeneity. 

Now we prove the following simple but rather surprising 
LEMMA 3a. A set F of f unctions f taking on only the values 0 and 1 
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which is weakly homogeneous of order 2 is also weakly homogeneous 
of order 3. 

PROOF.1 Let Ai ( l ^ i ^ w ) , denote the set of those ƒ £ F for which 
f (ai) = 1. Let us introduce a uniform measure on the set F. Then the 
Ai can be considered as random events, and the condition that F is 
weakly homogeneous of order 2 means that 

P(AiAj) + P(AiAé) 

has the same value for any choice of the different indices i and j . 
(Here the product of two events denotes the joint occurrence of these 
events and Î4 denotes the event that A does not occur.) Let us denote 
this value by C2, i.e. we put 

C2 = P(AiAj) + P(AiA,) (1 £ * < j' £ fi). 

To prove Lemma 2 we have to show that the value of P(AiA}Ak) 
-\-P(AiA9Ah) = Cz does not depend on the choice of the (different) 
indices i, j , k. As however 

P(AiAjAk) = 1 - P(Ai) - P(A,) - P(Ak) + P(Aj) + P(Ak) 

+ P(Ak) - P(AiAjAk) 

and similarly 

P(AiAjAK) - 1 - P(Ai) - P(Aj) - P(Ak) + P(AiA,) + P(AiAk) 

+ P(AjAk) - P(AiAjAk) 

it follows 

(2.1) 2Cz = 2(P(AiAjAk) + P(AiAjAk)) = 3C2 - 1. 

This proves Lemma 3a. 
Note that if i?i denotes the number of elements of F, R% the number 

of functions ƒ €E F for which ƒ (a,) =f(aj) for any pair (i, j) with 
lûi<j^n and Rz the number of functions f£F for which /(a t) 
=ƒ(<*j) = ƒ(<**) for any triple (*, j f A) ( l ^ i < j < £ ^ w ) , then accord­
ing to what has been proved above we have 

(2.2) 3R2- Ri = 2Rz. 

It follows from (2.2) that 

1 R2 
(2.3) — ^ — ^ 1 . 

3 #1 
1 My first proof of Lemma 3a was slightly more complicated. Later, essentially 

the same simpler proof was found independently by Mrs. Vera T. Sós and Mr. 
T. Nemetz; the proof given here is a third version of their proof. 
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I t is easy to prove that a weakly homogeneous system of order k 
is not necessarily of order k + 1 if fe^3, e.g. for fe = 3 this can be seen 
from Example 9; thus the statement of Lemma 3a cannot be gen­
eralized by replacing 2 and 3 by k and k + 1. However the following 
generalization of Lemma 3a is valid. 

LEMMA 3b. If the system F of functions with values 0 and 1 is weakly 
homogeneous of all orders l^2k then it is also weakly homogeneous of 
order 2k + \ ( i = l, 2, • • • ). 

PROOF. Using the notations of the proof of Lemma 3a according to 
our suppositions 

P(AhAh • • • Ait) + P(AhAh • • • il,,) = Ci 

does not depend on the choice of the different indices 4 , ^2, • • • , i\ 
for l^2k. Now similarly as we have proved (2.1) one can show that 

2(F(AhAit - • • Aiu+1) + P(AhAh • • • Ain+1)) 

(2.4) » /2Jfc + l \ 
= - (2*-1) + E (-!)'( t )Ci. 

Thus Lemma 2b follows. Putting Ci = Ri<Ri we obtain as a general­
ization of (2.2) 

2fc /2k + 1\ 
(2.5) 2R2W = - (2k - 1)*! + £ ( - l ) ' f ) * , . 

EXAMPLE 9. If the events Ai (l^i^n) are symmetrically depen­
dent, then the system F is clearly weakly homogeneous of every order. 
The same holds a fortiori if the events Ai are independent and have 
the same probability p. In this case 

(2.6) Ri = Rt(pt + (1 - pY) 0 - 1 , 2 , • • • ) 

and (2.5) is trivially satisfied. 
Note tha t in case (2.6) holds we have R%^R\/2. 
I t can be shown that weak homogeneity of every order I with 

2^1S. 2k —\ of a system of functions taking on the values 0 and 1 
does not necessarily imply its weak homogeneity of order 2k. This is 
shown e.g. by the following example, due to T. Nemetz (oral com­
munication). 

EXAMPLE 10. Let the function ƒ defined on S2AH-I= {0,1 , 2, • • • , 2k} 
belong to the family F if and only if the number of integers l^i^2k 
for which / ( i ) = 0 is even. Then clearly F is homogeneous of every 
order / ^2 i f e - l with Rx = 2*k, Ri = 2*k~l+l if Z S 2 * - 1 . However F is 
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not homogeneous of order 2k because the number of functions of 
fGF for which / ( l )= / (2 )= - • - =/(2&) is 4 while the number of 
functions/G^ for which /(0) =/(l) = • • • = / ( 2 £ - l ) is 2. 

According to (2.3) if F is weakly homogeneous of order 2 then 
i?2/i?iàl/3. This inequality is best possible without restriction on n 
as is seen from Example 7. However a better lower bound can be 
given, which depends on n. We prove 

LEMMA 4. Let F be a system of functions with values 0 and 1 on the set 
Sn which is weakly homogeneous of order 2. Let Ri denote the number of 
elements of F and R2 the number of functions ƒ G F for which ƒ(#»•) 
=/(a ;) (iyéj). Then we have 

(2.7) *>±^*L. 
Ri ~ 2(n - 1) 

PROOF. Let/i,/2, • • • , f^ denote the elements of F and ai, <x2, • • • , 
an the elements of *Sn. Let us put 

Rl n 

x = E £ƒ(*)• 

By Cauchy's inequality we have 

( Rl n \ 2 R\ / n \ 2 

EE/ife»)) ^ . 1 T/yW 
= R1X + R1J2 Ê Z fiifiùfiiflù, **'• 

Now by supposition 

(2.9) £ (1 - ƒ,(<**) - ƒ,(<*,) + 2/,fo»)/,(a,)) - -R* 

for all pairs fe, J with à?*/. Thus it follows that 

«(» - 1)*, = Rin(n - 1) - 2(i» - 1)X + 2 Ê Ê Ma>)Mad, 

k^l. 

Combining (2.8) and (2.10) we get 

(2.11) X2 ^ RXX + i-Ri(»(» - l)(R2 - -Ri) + 2(» - 1)Z). 

Thus it follows 
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R2 2(n(X Rx) - (X RxY) n n - 2 
(2.12) — ^ 1 - V V V ^ 1 

J?i w(w - 1) 2(» - 1) 2{n - 1) 
which proves Lemma 4. 

3. On the duration of the random search. Let F be a set of R\ func­
tions on the set S„= {ai, a2, • • • , an} which separates the elements 
of 5n . Let x be an unknown element of Sn and let us suppose that we 
search for x in the following way: We choose first a function f\ from 
F at random so that each element of F has the same probability 1/Ri 
to be chosen. We observe the value of /i(x), and after this choose 
again a function ƒ2 from F so that the choice of/2 is independent from 
the choice of ƒ1 and each element ƒ of F (including fi) has the same 
probability l/Ri to be chosen as /2. We observe f2(x) and choose an 
element ƒ 3 of F independently from the choices of fi and ƒ2, so that 
each element ƒ of F has the same probability l/Ri to be taken for ƒ3. 
(Thus the possibility that ƒ3 is equal to ƒ1 or /2 is not excluded.) We 
observe fs(x), etc. This process is repeated until ƒ#(#) is selected. Let 
Pi(n, N, F, x) denote the probability that the sequence /i(#), • • • , 
ƒ#(#) determines x uniquely. Let P^n^ N, F) denote the probability 
that the sequence fi(x), • • • ,/j\r(x) determines x whatever it may be. 
It has to be emphasized that P^in, N, F) and Pi(w, Nf F, x) are usually 
different (even if Pi(w, N, F, x) does not depend on x) and in general 
we can say only that Pi(ny N, F) ̂ min* Pi(w, JV, P, x). This is shown 
for instance by the following: 

EXAMPLE 11. Let 53 be the set {l, 2, 3} and let F consist of the 
three functions /i , /2 and / 3 where 

Ml) = 0, M2) = 1, /x(3) = 1, 

/2(1) = 1, /2(2) = 0, /2(3) - 1, 

/,(1) - 1, /,(2) = 1, /,(3) = 0. 

Evidently F separates the elements of S3 because all columns of the 
corresponding matrix 

0 1 1 

1 0 1 

1 1 0 

are different. Further F is weakly homogeneous of every order with 
i?2 = l, P3 = 0 and even strongly homogeneous of every order (with 
P2(l, 1) =P2(0,1) =P2(1,0) = 1, P2(0,0) =0 and 12,(0,1,1) =i?3(l, 0,1) 
=J?s(li 1, 0) = 1). Now let us compute Pi(3, 1, F, x). If x—i, x is 
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uniquely determined by the first chosen function if and only if this 
function is ƒ»(#) (i = l, 2, 3) and otherwise not; thus for each fixed 
value of x, Pi(3, 1, 7?, x) = 1/3. On the other hand P2(3, 1, F) = 0 be­
cause no function ƒ G F determines x uniquely whatever x may be. 

The difference between Pi(«, N, F, x) and Pa(w, N, F) can be made 
clear also as follows. Suppose the N functions which we have chosen 
by our random procedure are / i , • • • , ƒ#. Consider the matrix M 
having N rows and n columns, in which the feth element of the jth 
row is f j(ak). 

Then a fixed unknown element x of 5» is determined by the ob­
servations /i(x), • • • , /N(X) if and only if the xth column of this ma­
trix M (containing the entries f3(x) (j = l, 2, • • • , N)) is different 
from every other column of M, while the observations /i(x), • • • , ƒ#(#) 
determine x whatever it may be if and only if any two columns of M 
are different, and this second condition imposes a much more severe 
restriction on M than the first and thus the probability of M having 
the second property is usually definitely less than the probability of 
M having the first property. 

Thus we have to solve two different problems: to evaluate 
min* Pi(n, N, F, x) and P2(w, Nt F). First we give lower estimates for 
these quantities. 

In what follows we shall repeatedly use the following well-known 
inequalities of elementary probability theory. Let Ait • • • , Am be 
arbitrary events in a probability space; let the product of events 
denote the event consisting in the joint occurrence of the factors and 
let A denote the event contrary to the event A. Put Sk 
= ^PiA^Ait • • • Aik) (l^k^m) where the summation is extended 
over all ^-tuples (ii, i2, • • • , iu) which can be selected from the set 
{ l , 2, • • • , m}> and put 50 = 1. Then for Z = 0, 1, 2, • • • the in­
equalities 

21+1 21 

(3.1) E ( - 1 ) * * ^ P(Ai '••Am)éT, ( -1 )»* 

hold, and one has 

(3.2) P(At • • • Am) = £ ( -1)** . 

THEOREM 1. If the system F of functions defined on the set Sn 

= {1, 2, • • •, n} is weakly homogeneous of order 2, we have for all x(E.Sn 

(3.3) Pt(n, N, F, x) è 1 - (n - 1) e 



824 A. RÉNYI [November 

and 

n\/Ri\N 

(3.4) Pi(n,N,F)£l my 
PROOF. Let B{j (i^j) denote the event that ƒ(i) =f(j) for all the N 

selected functions. Then we have 

(3.5) P1(n,N,F,x) = p( Ü »*,) 

and 

(3.6) P*(n,N,F) = p( II 3,/Y 

In view of P(Bij) — (Rt/Ri)* we obtain from (3.1) immediately 
(3.3) and (3.4). 

COROLLARY. If Fn is for each n a separating system for the set Sn 

which is weakly homogeneous of order 2, having R\(n) elements and the 
parameter i?2(w), and if 

(3.7) lim [Nnlog—i-i-logn) - + oo 
n-*» \ R*\n) / 

then 

(3.8) lim min Px(n, Nn, Fn, x) = 1. 
n->op xÇ-8n 

If instead of (3.5) we suppose that 

Ri(n) 

R%(n) 
(3.9) l i m f i V n l o g — ^ 4 - 2 1 o g w ) = + oo 

we have 

(3.10) lim P2(n,Nn,Fn) = 1. 
n—mo 

Note that in order to be able to show that (3.10) holds, we had to 
choose Nn asymptotically twice as large as was needed to ensure the 
validity of (3.8). 

To judge the "quality" of the random search procedures in ques­
tion, one has to take into account that if only functions with values 
0 and 1 are used, then H(J) ^ 1 and thus by Lemma 2 the duration 
of the best systematic search can not be less than log n. 

Thus Theorem 1 asserts that if we use a random search by means 
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of a family F of R\ functions which is homogeneous of order 2, with 
parameters R2 and if n is large, the duration of the search will be 
with probability near to 1 only about (log(Ri/R2))~~1 times, respec­
tively about 2(log(i£i/i?2)~1 times longer than with the best system­
atic method, according to whether we want to have a procedure 
which leads to the solution in a single given case, or one which is 
universally applicable. This shows that random search processes are 
under mild restrictions really almost as good as the best systematic 
method. The factor (log(Ri/R2))"1 is of course usually larger than 1, 
but in case R2/R1 is equal to \ (or near to J) it is equal (near to) 1, 
and thus in such cases the random search procedure (for a single 
search) is with probability near to 1 if n is large asymptotically as 
good as the best systematic one. 

Similarly we can get also an upper estimate for Pi(n, N, F, x). 

THEOREM 2a. If the system F of functions with values 0 and 1 defined 
on the set is weakly homogeneous of order 2 (and thus by Lemma 3a 
also of order 3) we have for all xÇzSn 

"" N /n-l\/Rzy 
+ ( 2 )(l) • 

PROOF. (3.11) follows immediately from (3.5) and (3.1). 
REMARK. By (2.2) we have i ? 3 / i ? i ^ è ( 3 ( ^ 2 / ^ i ) - l ) . Thus it fol­

lows that 

RzRi 3(R2/Ri) - 1 9_ 

"̂ f= 2(R2/R1y
 = T 

Further, tha t in case 

R2 1 

Rt^Y 

we have 

Rt ~ 
Thus we get the following: 

COROLLARY. If for each n Fn is a system of functions with values 0 
and 1 on the set Sn which is weakly homogeneous of order 2 and if 
R2(n)/Ri{n) S1/2 further 

( Riinj) \ 
lim I Nnj log - log nj J = c > 0 

(3.11) Px{ny N,F,x)£l-(n- 1) © 
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then if xnj is any element of Snj 

1 - erc £ liminf Px(nh Nn$1 Fnp *»,) ^ lim sup P\(niy Nnp Fnpxnj) 

^ 1 - er* + 
2 

A similar upper estimate can be given for P^n, N, F) if F is sup­
posed to be homogeneous of order 4. 

THEOREM 2b. If the system F is homogeneous of order 4 on the set 5», 
then we have 

— - G ) ( f ) " + 4 G ) ( f r 

If we suppose that F is weakly homogeneous of every order, by 
using (3.2) we obtain an exact formula for Pi(n, N, F, x), the value 
of which does not depend in this case on x. 

THEOREM 3. If the system F is weakly homogeneous of every order, 
then P\(n, N, F, x) =Pi(w, N, F) does not depend on x and we have 

As regards P^in, N, F), to obtain a corresponding exact formula, 
we have to suppose that F is homogeneous of every order. The 
formula is however rather complicated, and therefore we do not 
write it out in detail here. 

Let us add one final remark. A useful generalization of these re­
sults is obtained if we suppose that the values jfi(#), • • • , ƒ#(#) &re 

observed not directly, but through a noisy channel. This problem was 
considered in a special case in [5]. 

4. Examples. 
EXAMPLE 12. Let F(n) be the set of all 2n functions with values 0 

and 1 on Sn. Clearly F(n) is homogeneous of every order with 
P*: = 2 w -* + 1 CK = 1, 2, • • • , »). Thus we get from Theorem 3 

n-l / » — 1\ 1 / l\n"~1 
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This formula can of course be also directly verified (see [ l ] and [2]). 
I t follows tha t if iVn/ = log2 nj+c+ej where e,—»0 (log2 denotes 
logarithm with base 2) we have 

lim Pi(»;-, Nnj, F(nj)) = exp 

In this case it is easy (see [ l ] and [2]) to determine P2(w, N, F(n)) 
explicitly : 

Thus if 

Nnj = 2 log2 tij + c + €ƒ where ej —> 0 

we have 

lim P2(«y, Nnjy F(nj)) = exp 
n.—»oo 

Note tha t the best systematic strategy requires the observation of 
{log2 n] functions ƒ G F(n). Thus if we are satisfied to find the un­
known with probability 0.99, the number of necessary observations 
is only by 7 greater for the random strategy as for the best systematic 
strategy, independently of the value of n. 

If for instance Sn is the set of all persons now living, then {log2n] 
= 32. Thus with our random strategy we can find a person among all 
those living with g 39 random dichotomies (instead of 32 dichotomies 
corresponding to the best systematic strategy). 

EXAMPLE 13 (see [3]). Suppose that F consists of all functions 
taking on the values 0, 1, • • • , 5 — 1 on Sn. Then we obtain from 
Theorem 1 tha t Pi(n, N, F) is near to 1 if N—log w/log 5 is large, 
while P2(w, N, F) is near to 1 if ^ — 2 log n/log s is large. Note tha t 
now H(J) =log2 5 for every / £ F , thus the best systematic strategy 
needs the observation of at least log w/log 5 function ƒ G F. 

EXAMPLE 14. Suppose that Fn(P) consists of all functions which 
take on the value r for lr=prn different elements of Sn (r = 1,2, • • •, S) 
where P— {pi, • • • , ps} is a probability distribution. Then Fn(P) 
is weakly homogeneous of order 2 with J R 2 / ^ I ^ / X ) ? - I £*• Thus by 
Theorem 1 Pi(», N, Fn(P)) will be near to 1 if N-log2 n/H2(P) is 
large, where 

Ht(p)-iogi(£ *;) \ 

B> 
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H2{P) is called (see [4]) the entropy of order 2 of the probability dis­
tribution P. 

The best systematic strategy needs the observation of about 
log2 n/Hi(P) function fÇzF where 

Sl(P) =T,Pr l0g2 — ' 
r-1 pr 

Thus the efficiency of the random search is in this case ~H2(P)/H\(P). 
It follows from the result of our paper [3] that for this example if 

lim (NnjH2(P) - 2 log2 %) = c 

we have 

lim P2(nj} Nnj, Fn.) = exp 
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