RADON-FOURIER TRANSFORMS ON SYMMETRIC SPACES AND RELATED GROUP REPRESENTATIONS¹

BY S. HELGASON

Communicated by G. D. Mostow, May 7, 1965

In §2 we announce some results in continuation of [10], connected with the Radon transform. §1 deals with tools which also apply to more general questions and §§2–3 contain some applications to group representations. A more detailed exposition of §2 appears in Proceedings of the U. S.-Japan Seminar in Differential Geometry, Kyoto, June, 1965.

1. Radial components of differential operators. Let V be a manifold, v a point in V and V_{\bullet} the tangent space to V at v. Let G be a Lie transformation group of V. A C^{∞} function f on an open subset of V is called locally invariant if Xf = 0 for each vector field X on V induced by the action of G.

Suppose now W is a submanifold of V satisfying the following transversality condition:

(T) For each
$$w \in W$$
, $V_w = W_w + (G \cdot w)_w$ (direct sum).

If f is a function on a subset of V its restriction to W will be denoted \overline{f} .

LEMMA 1.1. Let D be a differential operator on V. Then there exists a unique differential operator $\Delta(D)$ on W such that

$$(Df)^- = \Delta(D)\bar{f}$$

for each locally invariant f.

The operator $\Delta(D)$ is called the *radial component* of D. Many special cases have been considered (see e.g. $[1, \S 2], [4, \S 5], [5, \S 3], [7, \S 7], [8, Chapter IV, §\S 3-5]).$

Suppose now dv (resp. dw) is a positive measure on V (resp. W) which on any coordinate neighborhood is a nonzero multiple of the Lebesgue measure. Assume dg is a bi-invariant Haar measure on G. Given $u \in C_c^{\infty}(G \times W)$ there exists [7, Theorem 1] a unique $f_u \in C_c^{\infty}(G \cdot W)$ such that

$$\int_{G \times W} F(g \cdot w) u(g, w) \, dg dw = \int_{V} F(v) f_u(v) \, dv \qquad (F \in C_c^{\infty}(G \cdot W)).$$

Let $\phi_u \in C_c^{\infty}(W)$ denote the function $w \to \int u(g, w) dg$.

¹ Work supported in part by the National Science Foundation, NSF GP-2600.

THEOREM 1.2. Suppose G leaves dv invariant. Let T be a G-invariant distribution on $G \cdot W$. Then there exists a unique distribution \overline{T} on W such that

$$\overline{T}(\phi_u) = T(f_u), \qquad u \in C_c^{\infty}(G \times W).$$

If D is a G-invariant differential operator on V then

$$(DT)^{-} = \Delta(D)\overline{T}.$$

The proof is partly suggested by the special case considered in [7, §9]. See also [12, §4].

2. The Radon transform and conical distributions. Let G be a connected semisimple Lie group, assumed imbedded in its simply connected complexification. Let K be a maximal compact subgroup of G and X the symmetric space G/K. Let G=KAN be an Iwasawa decomposition of G (A abelian, N nilpotent) and let M and M', respectively, denote the centralizer and normalizer of A in K. The space E of all horocycles E in E can be identified with E and E and E denote the algebras of E invariant differential operators on E and E respectively; let E (E denote the symmetric algebra over the vector space E and E denote the symmetric algebra over the vector space E and E denote the symmetric algebra over the vector space E and E denote the symmetric algebra over the vector space E and E denote the symmetric algebra over the vector space E and E denote the symmetric algebra over the vector space E and E denote the symmetric algebra over the vector space E and E denote the symmetric algebra over the vector space E and E denote the symmetric algebra over the vector space E and E denote the symmetric algebra over the vector space E and E denote the symmetric algebra over the vector space E and E denote the symmetric algebra over the vector space E and E denote the symmetric algebra over the vector space E and E denote the symmetric algebra over the vector space E and E denote the symmetric algebra over the vector space E and E denote the symmetric algebra over the vector space E denote the symmetric algebra over the vector space E denote the symmetric algebra over the vector space E and E denote the symmetric algebra over the vector space E denote the symmetric algebra over the vector space E denote the symmetric algebra over the vector space E denote the symmetric algebra over the vector E denote the symmetric algebra over the vector E denote the symmetric algebra over the vector E denote the symmetric algebra

The Radon transform $f \rightarrow \hat{f}$ $(f \in C_c^{\infty}(X))$ and its dual $\phi \rightarrow \hat{\phi}$ $(\phi \in C^{\infty}(\Xi))$ are defined by

$$f(\xi) = \int_{\xi} f(x)dm(x), \quad \check{\phi}(x) = \int_{\check{x}} \phi(\xi)d\mu(\xi) \quad (x \in X, \, \xi \in \Xi)$$

where dm is the measure on ξ induced by the canonical Riemannian structure of X, \check{x} is the set of horocycles passing through x and $d\mu$ is the measure on \check{x} invariant under the isotropy subgroup of G at x, satisfying $\mu(\check{x}) = 1$. The easily proved relation

(1)
$$\int_{\mathcal{X}} f(x)\check{\phi}(x)dx = \int_{\mathcal{Z}} f(\xi)\phi(\xi)d\xi \qquad (f \in C_c^{\infty}(X), \phi \in C_c^{\infty}(\Xi))$$

dx and $d\xi$ being G-invariant measures on X and Ξ , respectively, suggests immediately how to extend the integral transforms above to distributions.

Let \mathfrak{G} and \mathfrak{A} be the Lie algebras of G and A, respectively, and \mathfrak{A}^*

the dual space of \mathfrak{A} . Let $\lambda \to c(\lambda)$ be the function on \mathfrak{A}^* giving the Plancherel measure $|c(\lambda)|^{-2}d\lambda$ for the K-invariant functions on X (Harish-Chandra [6, p. 612]). Let j be the operator on rapidly decreasing functions on A which under the Fourier transform on A corresponds to multiplication by c^{-1} . Let ρ denote the sum (with multiplicity) of the restricted roots on \mathfrak{A} which are positive in the ordering given by N. Let e^{ρ} denote the function on Ξ defined by $e^{\rho}(kaMN) = \exp[\rho(\log a)]$ ($k \in K$, $a \in A$). Viewing Ξ as a fibre bundle with base K/M, fibre A [10, p. 675] we define the operator Λ on suitable functions ϕ on Ξ by $(e^{\rho}\Lambda\phi)|F=j((e^{\rho}\phi)|F)$, where |F| denotes restriction to any fibre F. Similarly, the complex conjugate of c^{-1} determines an operator Λ . By means of the Plancherel formula mentioned one proves (cf. [11, §6]).

THEOREM 2.1. There exist constants c, c' > 0 such that

(2)
$$\int_{\mathcal{X}} |f(x)|^2 dx = c' \int_{\mathcal{Z}} |\Lambda \hat{f}(\xi)|^2 d\xi,$$

$$f = c(\Lambda \bar{\Lambda} \hat{f})^*$$

for all $f \in C_c^{\infty}(X)$.

If all Cartan subgroups of G are conjugate, the operators j and Λ are differential operators (c^{-1} is a polynomial). Considering $j\bar{j}$ is an element in I(A) we put $\square = \Gamma^{-1}(j\bar{j}) \in \mathcal{D}(X)$. Then (3) can be written in the form

$$f = c \square ((f)^*), \qquad f \in C_c^{\infty}(X),$$

which is more convenient for applications [10, \S 7]. For the case when G is complex a formula closely related to (3) was given by Gelfand-Graev [2, \S 5.5].

Let x_0 and ξ_0 denote the origins in X and Ξ , respectively. The space B = K/M can be viewed as the set of Weyl chambers emanating from x_0 in X. If $\xi = ka \cdot \xi_0$ ($k \in K$, $a \in A$) we say that the Weyl chamber kM is normal to ξ and that a is the complex distance from x_0 to ξ . If $x \in X$, $b \in B$ let $\xi(x, b)$ be the horocycle with normal b passing through x, and let A(x, b) denote the complex distance from x_0 to $\xi(x, b)$.

THEOREM 2.2. For $f \in C_c^{\infty}(X)$ define the Fourier transform \tilde{f} by

$$\tilde{f}(\lambda,b) = \int_X f(x) \exp[(-i\lambda + \rho)(A(x,b))] dx \qquad (\lambda \in \mathfrak{A}^*, b \in B).$$

Then

(4)
$$f(x) = \int_{\mathfrak{A} \bullet \times B} \tilde{f}(\lambda, b) \exp(i\lambda + \rho) (A(x, b)) |c(\lambda)|^{-2} d\lambda db$$

$$\int_{\mathfrak{X}} |f(x)|^{2} dx = \int_{\mathfrak{A} \bullet \times B} |\tilde{f}(\lambda, b)|^{2} |c(\lambda)|^{-2} d\lambda db,$$

where db is a suitably normalized K-invariant measure on B.

REMARKS. (i) In view of the analogy between horocycles in X and hyperplanes in \mathbb{R}^n formula (4) corresponds exactly to the Fourier inversion formula in \mathbb{R}^n when written in polar coordinate form.

- (ii) If f is a K-invariant function on X, Theorem 2.2 reduces to Harish-Chandra's Plancherel formula [6, p. 612]. Nevertheless, Theorem 2.2 can be derived from Harish-Chandra's formula.
- (iii) A "plane wave" on X is by definition a function on X which is constant on each member of a family of parallel horocycles. Writing (4) in the form

(4')
$$f(x) = \int_{B} f_b(x) db$$

we get a continuous decomposition of f into plane waves. On the other hand, if we write (4) in the form

$$f(x) = \int_{\Re A} f_{\lambda}(x) \, \big| \, c(\lambda) \, \big|^{-2} \, d\lambda$$

we obtain a decomposition of f into simultaneous eigenfunctions of all $D \in D(X)$.

We now define for Ξ the analogs of the spherical functions on X. Definition. A distribution (resp. C^{∞} function) on $\Xi = G/MN$ is called *conical* if it is (1) MN-invariant; (2) eigendistribution (resp. eigenfunction) of each $D \in \mathcal{D}(\Xi)$.

Let $\xi_0 = MN$, $\xi^* = m^*MN$, where m^* is any element in M' such that the automorphism $a \rightarrow m^*am^{*-1}$ of A maps ρ into $-\rho$. By the Bruhat lemma, Ξ will consist of finitely many MNA-orbits; exactly one, namely $\Xi^* = MNA \cdot \xi^*$, has maximum dimension and given $\xi \in \Xi^*$ there exists a unique element $a(\xi) \in A$ such that $\xi \in MNa(\xi) \cdot \xi^*$ [10, p. 673]. Using Theorem 1.2 we find:

THEOREM 2.3. Let T be a conical distribution on Ξ . Then there exists $a\psi \in C^{\infty}(\Xi^*)$ such that $T = \psi$ on Ξ^* and a linear function $\mu \colon \mathfrak{A} \to \mathbb{C}$ such that

(5)
$$\psi(\xi) = \psi(\xi^*) \exp[\mu(\log a(\xi))] \qquad (\xi \in \Xi^*).$$

In general ψ is singular on the lower-dimensional MNA-orbits. However, we have:

THEOREM 2.4. Let $\mu: \mathfrak{A} \to \mathbb{C}$ be a linear function and let $\psi \in C^{\infty}(\Xi^*)$ be defined by (5). Then ψ is locally integrable on Ξ if and only if

(6) Re
$$(\langle \alpha, \mu + \rho \rangle) > 0$$
 (Re = real part)

for each restricted root $\alpha > 0$; here \langle , \rangle denotes the inner product on \mathfrak{A}^* induced by the Killing form of \mathfrak{G} . If (6) is satisfied then ψ , as a distribution on Ξ , is a conical distribution.

THEOREM 2.5. The conical functions on Ξ are precisely the functions ψ given by (5) where for each restricted root $\alpha > 0$,

(7)
$$\frac{\langle \mu, \alpha \rangle}{\langle \alpha, \alpha \rangle} \text{ is an integer } \geq 0.$$

DEFINITION. A representation π of G on a vector space E will be called (1) *spherical* if there exists a nonzero vector in E fixed by $\pi(K)$; (2) *conical* if there exists a nonzero vector in E fixed by $\pi(MN)$.

The correspondence between spherical functions on X and spherical representations is well known. In order to describe the analogous situation for Ξ , for an arbitrary function ϕ on Ξ , let E_{ϕ} denote the vector space spanned by the G-translates of ϕ and let π_{ϕ} denote the natural representation of G on E_{ϕ} .

THEOREM 2.6. The mapping $\psi \to \pi_{\psi}$ maps the set of conical functions on Ξ onto the set of finite-dimensional, irreducible conical representations of G. The mapping is one-to-one if we identify proportional conical functions and identify equivalent representations. Also

$$\psi(g\cdot\xi_0) = (\pi_{\psi}(g^{-1})e, e'),$$

where e and e', respectively, are contained in the highest weight spaces of π_{ψ} and of its contragredient representation. Finally, μ in (5) is the highest weight of π_{ψ} .

COROLLARY 2.7. Let π be a finite-dimensional irreducible representation of G. Then π is spherical if and only if it is conical.

The highest weights of these representations are therefore characterized by (7). Compare Sugiura [13], where the highest weights of the spherical representations are determined.

3. The case of a complex G. If G is complex, M is a torus and some of the results of 2 can be improved. Let 5 be a Cartan subalgebra

of \mathfrak{G} containing \mathfrak{A} and H the corresponding analytic subgroup of G. Now we assume G simply connected.

Let D(G/N) denote the algebra of all G-invariant differential operators on G/N. Let ν_0 , $\nu^* \in G/N$ be constructed similarly as ξ_0 and ξ^* in §2. Then §1 applies to the submanifold $W = H \cdot \nu^*$ of $V = NH \cdot \nu^*$ and for each differential operator D on G/N, $\Delta(D)$ is defined and can be viewed as a differential operator on H.

THEOREM 3.1. The mapping $D \rightarrow \Delta(D)$ is an isomorphism of D(G/N) onto the (real) symmetric algebra $S(\mathfrak{F})$. In particular, D(G/N) is commutative.

As a consequence one finds that the N-invariant eigenfunctions $f \in C^{\infty}(G/N)$ of all $D \in D(G/N)$ have a representation analogous to (5) in terms of the characters of H. Let E_f denote the vector space spanned by the G-translates of f and let π_f be the natural representation of G on E_f .

THEOREM 3.2. The mapping $f \rightarrow \pi_f$ is a one-to-one mapping of the set of N-invariant holomorphic eigenfunctions of all $D \in D(G/N)$ (proportional f identified) onto the set of all finite-dimensional² irreducible holomorphic representations of G (equivalent representations identified). Moreover

$$f(g \cdot \nu_0) = (\pi_f(g^{-1})e, e'),$$

where e and e', respectively, are contained in the highest weight spaces of π_i and of its contragredient representation.

REFERENCES

- 1. F. A. Berezin, Laplace operators on semisimple Lie groups, Trudy Moskov. Mat. Obšč. 6 (1957), 371-463; Amer. Math. Soc. Transl. 21 (1962), 239-299.
- 2. I. M. Gelfand and M. I. Graev, The geometry of homogeneous spaces, group representations in homogeneous spaces and questions in integral geometry related to them. I, Trudy Moskov. Mat. Obšč. 8 (1959), 321–390; Amer. Math. Soc. Transl. 37 (1964), 351–429.
- 3. R. Godement, A theory of spherical functions. I, Trans. Amer. Math. Soc. 73 (1952), 496-556.
- 4. Harish-Chandra, The characters of semisimple Lie groups, Trans. Amer. Math. Soc. 83 (1956), 98-163.
- 5. ——, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 87-120.
- 6. ——, Spherical functions on a semisimple Lie group. I, II, Amer. J. Math. 80 (1958), 241-310, 553-613.

² Compare the problem indicated in [3, p. 553].

- 7. ——, Invariant distributions on Lie algebras, Amer. J. Math. 86 (1964), 271-309.
- 8. S. Helgason, Differential operators on homogeneous spaces, Acta Math. 102 (1959), 239-299.
- 9. ——, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- 10. ——, Duality and Radon transform for symmetric spaces, Amer. J. Math. 85 (1963), 667-692.
- 11. ——, A duality in integral geometry; some generalizations of the Radon transform, Bull. Amer. Math. Soc. 70 (1964), 435-446.
- 12. P-D. Methée, Sur les distributions invariantes dans le groupe des rotations de Lorentz, Comment. Math. Helv. 28 (1954), 225-269.
- 13. M. Sugiura, Representations of compact groups realized by spherical functions on symmetric spaces, Proc. Japan Acad. 38 (3) (1962), 111-113.

INSTITUTE FOR ADVANCED STUDY