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In §2 we announce some results in continuation of [10], connected 
with the Radon transform. §1 deals with tools which also apply to 
more general questions and § §2-3 contain some applications to group 
representations. A more detailed exposition of §2 appears in Pro­
ceedings of the U. S.-Japan Seminar in Differential Geometry, Kyoto, 
June, 1965. 

1. Radial components of differential operators. Let F be a mani­
fold, v a point in V and V9 the tangent space to V at v. Let G be a Lie 
transformation group of V. A C00 function ƒ on an open subset of V is 
called locally invariant if X / = 0 for each vector field X on V induced 
by the action of G. 

Suppose now W is a submanifold of V satisfying the following 
transversality condition: 

(T) For each w G W, Vw = Ww+ (G-w)w (direct sum). 

If ƒ is a function on a subset of V its restriction to W will be denoted J. 

LEMMA 1.1. Let Dbea differential operator on V. Then there exists a 
unique differential operator A(J9) on W such that 

(Df)~ = A(Z>)7 

for each locally invariant ƒ. 

The operator A(D) is called the radial component of D. Many special 
cases have been considered (see e.g. [l, §2], [4, §5], [5, §3], [7, §7], 
[8, Chapter IV, §§3-5]). 

Suppose now dv (resp. dw) is a positive measure on V (resp. W) 
which on any coordinate neighborhood is a nonzero multiple of the 
Lebesgue measure. Assume dg is a bi-invariant Haar measure on G. 
Given w G C ( G X W) there exists [7, Theorem l ] a unique 
fuEC?(G-W) such that 

f F(g-w)u(g,w)dgdw= fF(v)Mv)dv (FEC?(G-W)). 

Let <ÊuECc°°(W) denote the function w-*fu(g, w)dg, 
1 Work supported in part by the National Science Foundation, NSF GP-2600. 
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THEOREM 1.2. Suppose G leaves dv invariant. Let Tbea G-invariant 
distribution on G-W. Then there exists a unique distribution T on W 
such that 

T(<i>u) = T(fu), u G C?(G X W). 

If D is a G-invariant differential operator on V then 

(DT)- = A(D)T. 

The proof is partly suggested by the special case considered in [7, 
§9]. See also [12, §4]. 

2. The Radon transform and conical distributions. Let G be a con­
nected semisimple Lie group, assumed imbedded in its simply con­
nected complexification. Let K be a maximal compact subgroup of 
G and X the symmetric space G/K. Let G — KAN be an Iwasawa 
decomposition of G (A abelian, N nilpotent) and let M and M', re­
spectively, denote the centralizer and normalizer of A in K. The space 
S of all horocycles £ in X can be identified with G/MN [10, §3]. Let 
D(X) and D(S) denote the algebras of G-invariant differential oper­
ators on X and S, respectively; let S(A) denote the symmetric alge­
bra over the vector space A and 1(A) the set of elements in S (A) 
which are invariant under the Weyl group W— M'/M. There are iso­
morphisms T of D(X) onto 1(A) [6, p. 260], [9, p. 432] and f of 
D(S) onto S(A) [10, p. 676]. 

The Radon transform ƒ-»ƒ (ƒ G Cc°° (X)) and its dual<j>-*f> (<£G C°°(2)) 
are defined by 

ƒ(£) = ƒ f(x)dm(x), *(x) = J>fê)<WÖ (xEX^eS) 

where dm is the measure on £ induced by the canonical Riemannian 
structure of Xy x is the set of horocycles passing through x and dp is the 
measure on x invariant under the isotropy subgroup of G at x, satisfy­
ing n(x) — 1. The easily proved relation 

(i) ƒ f(x)Ux)dx = £ mwm (f e c?(x), * e C?(E)) 

dx and d% being G-invariant measures on X and H, respectively, sug­
gests immediately how to extend the integral transforms above to 
distributions. 

Let © and 21 be the Lie algebras of G and A, respectively, and 2Ï* 
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the dual space of H. Let X—»c(X) be the function on 21* giving the 
Plancherel measure | c(X) | ~2dk for the X-invariant functions on X 
(Harish-Chandra [6, p. 612]). Let j be the operator on rapidly de­
creasing functions on A which under the Fourier transform on A 
corresponds to multiplication by c_1 . Let p denote the sum (with 
multiplicity) of the restricted roots on 21 which are positive in the 
ordering given by N. Let ep denote the function on S defined by 
ep(kaMN) =exp[p(log a)] (&£i£, aÇzA). Viewing S as a fibre bundle 
with base K/M, fibre A [10, p. 675] we define the operator A on 
suitable functions <j> on S by (epA.<f>) \ F=j((ep<t>) \ F), where | F denotes 
restriction to any fibre F. Similarly, the complex conjugate of c"1 

determines an operator Â. By means of the Plancherel formula men­
tioned one proves (cf. [ i l , §6]). 

THEOREM 2.1. There exist constants c, c ' > 0 such that 

(2) J^|/W|2^=c'JjA/(ö|2^, 
(3) f=c(AÂ}y 

for all fee:(X). 

If all Cartan subgroups of G are conjugate, the operators j and A 
are differential operators ( c - 1 is a polynomial). Considering jj is an 
element in 1(A) we put D = r ~ 1 ( j j ) G D ( X ) . Then (3) can be written 
in the form 

ƒ = cD ((/)"), fec?(x), 
which is more convenient for applications [10, §7]. For the case when 
G is complex a formula closely related to (3) was given by Gelfand-
Graev [2, §5.5]. 

Let Xo and £0 denote the origins in X and S, respectively. The space 
B=K/M can be viewed as the set of Weyl chambers emanating from 
#0 in X. If £ = ka -Co (kÇ^K, a(EA) we say that the Weyl chamber kM 
is normal to J and that a is the complex distance from x0 to £. If x £ X , 
&Ç.B let £(x, b) be the horocycle with normal b passing through x, 
and let A(x, b) denote the complex distance from x0 to £(x, b). 

THEOREM 2.2. For / G C ( X ) define the Fourier transform f by 

/(X, *) = f ƒ(*) e x p [ ( - ; \ + P)(A(x, b))]dx (X G 21*, b G B). 
J x 

Then 
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(4) ƒ(*) = f /(X, b) exp («X + p)(^(*, $))] | o(X) |" W 6 

r iƒ(*> i* «to - r i/(A, j) i« i CM \-*d\db, 

wftere d& is a suitably normalized K-invariant measure on B. 

REMARKS, (i) In view of the analogy between horocycles in X and 
hyperplanes in Rn formula (4) corresponds exactly to the Fourier in­
version formula in Rn when written in polar coordinate form. 

(ii) If ƒ is a X-invariant function on X, Theorem 2.2 reduces to 
Harish-Chandra's Plancherel formula [6, p. 612]. Nevertheless, 
Theorem 2.2 can be derived from Harish-Chandra's formula. 

(iii) A "plane wave" on X is by definition a function on X which is 
constant on each member of a family of parallel horocycles. Writing 
(4) in the form 

(40 ƒ(*)= f fb(x)db 
J B 

we get a continuous decomposition of ƒ into plane waves. On the 
other hand, if we write (4) in the form 

(4") ƒ(*)= f A(*)|c(A)h<& 
J a* 

we obtain a decomposition of ƒ into simultaneous eigenfunctions of 
all DGD(X). 

We now define for 2 the analogs of the spherical functions on X. 
DEFINITION. A distribution (resp. C00 function) on 3, = G/MN is 

called conical if it is (1) AfiV-invariant; (2) eigendistribution (resp. 
eigenfunction) of each Z>£Z)(2). 

Let £Q=*MN9 £* = m*MN, where m* is any element in M' such 
that the automorphism a-+m*am*~1 of A maps p into —p. By the 
Bruhat lemma, 2 will consist of finitely many MNA-orbits; exactly 
one, namely 'E* = MNA-I;*f has maximum dimension and given 
£E2* there exists a unique element a(!;)£;A such that ££ikfiVa (£)•£* 
[10, p. 673]. Using Theorem 1.2 we find: 

THEOREM 2.3. Let The a conical distribution on 2. Then there exists 
#GC°°(S*) such that T=\f/ on 2* and a linear f unction IJL: 2Ï—>C such 
that 

(s) #(D - nn expKiog a©)] me s*). 
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In general ^ is singular on the lower-dimensional MNA-orbits. 
However, we have: 

THEOREM 2.4. Let JJL: 21—>C be a linear function and let ^GC°°(S*) 
be defined by (5). Then rp is locally integrable on S if and only if 

(6) Re «a , fi + p» > 0 (Re = real part) 

for each restricted root a > 0 ; here { , ) denotes the inner product on 31* 
induced by the Killing form of ®. If (6) is satisfied then \p, as a dis­
tribution on S, is a conical distribution. 

THEOREM 2.5. The conical f unctions on S are precisely the functions 
$ given by (5) where for each restricted root a>0, 

(M> « ) 
(7) is an integer ^ 0 . 

(a, a) 
DEFINITION. A representation w of G on a vector space E will be 

called (1) spherical if there exists a nonzero vector in E fixed by ir(K) ; 
(2) conical if there exists a nonzero vector in E fixed by ir(MN). 

The correspondence between spherical functions on X and spheri­
cal representations is well known. In order to describe the analogous 
situation for S, for an arbitrary function 0 on S, let E 0 denote the 
vector space spanned by the G-translates of <j> and let 7i> denote the 
natural representation of G on E4. 

THEOREM 2.6. The mapping \f/-^w^ maps the set of conical f unctions 
on S onto the set of finite-dimensional, irreducible conical representa­
tions of G. The mapping is one-to-one if we identify proportional conical 
functions and identify equivalent representations. Also 

where e and e', respectively, are contained in the highest weight spaces 
of iTf and of its contragredient representation. Finally, /x in (5) is the 
highest weight of w^. 

COROLLARY 2.7. Let w be a finite-dimensional irreducible representa­
tion of G. Then T is spherical if and only if it is conical. 

The highest weights of these representations are therefore char­
acterized by (7). Compare Sugiura [13], where the highest weights 
of the spherical representations are determined. 

3. The case of a complex G. If G is complex, M is a torus and some 
of the results of §2 can be improved. Let § be a Cartan subalgebra 
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of © containing 21 and H the corresponding analytic subgroup of G. 
Now we assume G simply connected. 

Let D(G/N) denote the algebra of all G-invariant differential oper­
ators on G/N. Let v0, *>*£G/^ be constructed similarly as £0 and £* 
in §2. Then §1 applies to the submanifold W=H-v* of V = NH-v* 
and for each differential operator D on G/N, A(Z>) is defined and can 
be viewed as a differential operator on H. 

THEOREM 3.1. The mapping D—»A(Z>) is an isomorphism of D(G/N) 
onto the (real) symmetric algebra 5 ( § ) . In particular, D(G/N) is com­
mutative. 

As a consequence one Ends that the iV-invariant eigenfunctions 
fÇzC°°(G/N) of all D£D(G/N) have a representation analogous to 
(5) in terms of the characters of H. Let E/ denote the vector space 
spanned by the G-translates of ƒ and let 7iy be the natural representa­
tion of G on Ef. 

THEOREM 3.2. The mapping ƒ—»7T/ is a one-to-one mapping of the 
set of N-invariant holomorphic eigenfunctions of all DÇzD(G/N) (pro­
portional ƒ identified) onto the set of all finite-dimensional2 irreducible 
holomorphic representations of G (equivalent representations identified). 
Moreover 

f(g-vo) = (ir/Gr1)^ e'), 

where e and e', respectively, are contained in the highest weight spaces 
of Tf and of its contragredient representation. 
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