SEMI-REGULAR MAXIMAL ABELIAN SUBALGEBRAS IN HYPERFINITE FACTORS¹

BY SISTER RITA JEAN TAUER

Communicated by R. C. Buck, February 1, 1965

A factor is a ring of operators whose center consists only of scalar multiples of the identity. Murray and von Neumann have defined various kinds of factors, calling a continuous factor with finite trace a type II₁ factor [3], [4]. Dixmier began the detailed study of maximal abelian subalgebras of type II₁ factors. He defined regular, semiregular but not regular, and singular maximal abelian subalgebras, and showed that at least one of each type exists [2]. His II₁ factors turn out to be hyperfinite in algebraic type. The factors we consider are also hyperfinite. In this note we discuss their semi-regular subalgebras, and present an isomorphism invariant which allows us to obtain new existence results.

Let \mathfrak{A} be a hyperfinite factor, R a maximal abelian subalgebra of \mathfrak{A} . For any subring D of \mathfrak{A} , N(D) is the ring generated by all unitaries which leave D invariant, and $N^k(D) = N[N^{k-1}(D)]$. In particular, we let N(R) = P. R is semi-regular but not regular iff P is a factor not equal to \mathfrak{A} . In [5] we defined an isomorphism invariant for such subalgebras, which we called length. If $R \subset P \subset N(P) \subset \cdots \subset N^L(P) = \mathfrak{A}$, (when $R \neq P \neq N(P) \neq \cdots \neq N^L(P)$) then L is the length of R. By constructing a semi-regular subalgebra R of every length $L=1, 2, 3, \cdots$, we obtained an infinite sequence of subalgebras which could not be pairwise connected by *-automorphisms of \mathfrak{A} .

Another possible invariant is product type. Suppose R has length L. Then R is of product type α , $0 \le \alpha \le L$, iff the following holds: For every t, $1 \le t \le \alpha$, there exist S_1 and S_2 in $N^{t-1}(P)^{\perp} \cap N^t(P)$ such that the product $S_1S_2\ne 0$ is in $N^{t-1}(P)^{\perp} \cap N^t(P)$. But for s such that $\alpha \le s \le L$, every T_1 and T_2 in $N^{s-1}(P)^{\perp} \cap N^s(P)$ have their product T_1T_2 in $N^{s-1}(P)$. (Taking of orthogonal complements is meaningful, for within a II_1 factor, the weak, strong, and Hilbert space (metric) closures of a subalgebra all coincide [4]. The metric topology is based on the norm derived from the scalar product (A, B) = Tr(B*A) for A, B in \mathfrak{A} .)

THEOREM 1. Suppose R and R' are semi-regular but not regular subalgebras of \mathfrak{A} , and R has product type α , while R' has product type

¹ This work was done as part of NSF Research Participation for College Teachers, the University of Oklahoma, summer, 1964.

 α' , $\alpha \neq \alpha'$. Then there does not exist a *-automorphism Θ of $\mathfrak A$ such that $\Theta(R') = R$.

PROOF. We can assume $\alpha' > \alpha$, so that $\alpha' \ge \alpha + 1$. Letting $t = \alpha + 1$ in the definition of product type, we know we can choose S_1 , S_2 in $N^{\alpha}(P')^{\perp} \cap N^{\alpha+1}(P')$ such that $S_1S_2 = S_3 \ne 0$ is in this set also. Suppose there exists Θ such that $\Theta(R') = R$. By a standard argument, it follows that $\Theta[N(R')] = N(R)$ or N(P') = P, and inductively, $\Theta[N^{\alpha}(P')] = N^{\alpha}(P)$ and $\Theta[N^{\alpha+1}(P')] = N^{\alpha+1}(P)$. Let $\Theta(S_i) = T_i$, so that $T_i \in N^{\alpha+1}(P)$ for i = 1, 2, or 3. Now if $A \in N^{\alpha}(P')$, then $(S_i, A) = 0$ = $\text{Tr}[A^*S_i] = \text{Tr}[\Theta(A^*S_i)]$ (since the trace function is unique) = $\text{Tr}[\Theta(A)^*\Theta(S_i)] = (\Theta(S_i), \Theta(A)) = (T_i, \Theta(A)) = 0$. As A ranges over $N^{\alpha}(P')$, $\Theta(A)$ takes on all values in $N^{\alpha}(P)$, so we must have T_i in $N^{\alpha}(P)^{\perp}$. Thus T_i is in $N^{\alpha}(P)^{\perp} \cap N^{\alpha+1}(P)$ for i = 1, 2, or 3.

Now $\alpha+1>\alpha$, so letting $s=\alpha+1$ and considering the product type of R, it follows that T_1T_2 is in $N^{\alpha}(P)$. But $T_1T_2=\Theta(S_1)\Theta(S_2)=\Theta(S_1S_2)=\Theta(S_3)=T_3$. Since T_3 is in $N^{\alpha}(P)^{\perp}$, this leads to a contradiction. $(T_3\neq 0 \text{ since } S_3\neq 0 \text{ and } \Theta \text{ is an automorphism.})$ Therefore we cannot have $\Theta(R')=R$.

THEOREM 2. There are (L+1) semi-regular subalgebras of length L which cannot be pairwise connected by *-automorphisms of $\mathfrak A$. Specifically, these have product types $\alpha=0,\,1,\,2,\,\cdots,\,L$.

We give an indication of the proof, which is constructive and depends on the results of [5]. For each $n=1,\ 2,\ 3,\ \cdots$, the matrix units (of all the 2^p by 2^p matrix algebras, where p is an odd multiple of n) are divided into n orthogonal sets. These are called $\mathfrak{N}_0,\ \mathfrak{N}_1,\ \cdots,\ \mathfrak{N}_n$, and the set $\mathfrak{C}_k = \bigcup_{j=0}^k \mathfrak{N}_j$. The ring $R(\mathfrak{C}_k)$ is defined as the weak closure of the algebra generated by matrix units in \mathfrak{C}_k . Then for each n and for $0 \le \alpha \le n-\alpha$, we construct $R_n(\alpha)$, a semi-regular subalgebra. The chain for $R_n(\alpha)$ is such that $N^t(P_n(\alpha)) = R(\mathfrak{C}_{2t})$ for $0 \le t \le \alpha$ and $N^s(P_n(\alpha)) = R(\mathfrak{C}_{\alpha+s})$ for $\alpha \le s \le n-\alpha$. Since $N^{n-\alpha}(P_n(\alpha)) = R(\mathfrak{C}_n) = \mathfrak{A}$, we have $L = n-\alpha$.

But these properties are sufficient to show that $R_n(\alpha)$ has product type α . So for any $L=1, 2, 3, \cdots$, we can take $\alpha=0, 1, \cdots, L$, and $n=\alpha+L$. Then, by Theorem 1, there does not exist an *-automorphism Θ of $\mathfrak A$ such that $\Theta(R_{\alpha+L}(\alpha))=R_{\alpha'+L}(\alpha')$ when $\alpha\neq\alpha'$.

A generalization of the concept of product type permits one to construct 2^L nonisomorphic semi-regular maximal abelian subalgebras of every length L. However, the construction becomes extremely involved.

BIBLIOGRAPHY

- 1. J. Dixmier, Les algèbres d'operateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1957.
- 2. ——, Sous-anneaux abéliens maximaux dans les facteurs de type fini, Ann. of Math. 59 (1957), 279-286.
- 3. F. J. Murray and J. von Neumann, On rings of operators, Ann. of Math. 37 (1936), 116-229.
 - 4. —, On rings of operators. IV, Ann. of Math. 44 (1943), 716-808.
- 5. Sister R. J. Tauer, Maximal abelian subalgebras in finite factors of type II, Trans. Amer. Math. Soc. 114 (1965), 281-308.

THE COLLEGE OF ST. CATHERINE, ST. PAUL, MINNESOTA

PURE SUBGROUPS HAVING PRESCRIBED SOCLES

BY PAUL HILL

Communicated by R. S. Pierce, January 22, 1965

Let $B = \sum B_n$ be a direct sum of cyclic groups where, for each positive integer n, $B_n = \sum C(p^n)$ is zero or homogeneous of degree p^n where p is a fixed prime. Denote by \overline{B} the torsion completion of B in the p-adic topology. Following established terminology [1], we refer to \overline{B} as the closed primary groups with basic subgroup B. A primary group G is said to be pure-complete if each subsocle of G supports a pure subgroup of G. A semi-complete group was defined by Kolettis in [6] to be a primary group which is the direct sum of a closed group and a direct sum of cyclic groups.

For a particular B, I exhibited in [3] nonisomorphic pure subgroups H and K of \overline{B} having the same socle. Using this example, Megibben [7] was the first to show the existence of a primary group without elements of infinite height which is not pure-complete. We mention that each semi-complete group is pure-complete [4]. The purpose of this note is to announce the following theorem and corollaries; proofs will appear in another paper.

THEOREM. Suppose that B is unbounded and countable and that S is any proper dense subsocle of \overline{B} such that $|S| = 2^{\aleph_0}$. Then S supports more than 2^{\aleph_0} pure subgroups of \overline{B} which are isomorphically distinct.

The theorem has the following implications.

COROLLARY 1. Suppose that B is unbounded and countable and that