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Let S be a compact Hausdorff space and let K be a closed subset
of S. Denote by C(S) (respectively, C(KX)) the Banach space of all
continuous real-valued functions on S (respectively, K) with the
supremum norm. A bounded linear operator T from C(K) to C(S)
is called a simultaneous extension (s.e.) operator if the restriction of
Tf to K is equal to f for every fE C(K). Put

7(K, S) = inf{||7|[; T is an s.e. operator from K to S}.

(K, S) = if there exists no s.e. operator from K to S.) Several
authors (for example, Borsuk, Kakutani, Dugundji and Arens, cf.
the expository paper [4] for references) have considered this notion
of simultaneous extension of continuous functions. It is known that,
if K is metrizable, then (K, S) =1 for every SDOK (cf. the recent
paper [3] for a much stronger result), and examples of K and S for
which 9(X, S) =« are known. As far as we know, in all examples
considered thus far either one of these two extreme situations oc-
curred.

In this note we find all the possible values of 7(X, S) for K the one-
point compactification of an uncountable set (which is, in a sense, the
simplest nonmetrizable compact Hausdorff space). The result we ob-
tain is somewhat surprising and it indicates that the study of the
behaviour of 7(X, S) for more general K may be of interest. We in-
tend to consider this question as well as the more general question of
extending maps into nonmetrizable compact convex sets in a future
paper (cf. also Proposition 1 in this note).

THEOREM 1. Let K be the one-point compactification of an uncounia-
ble set. Then, for every compact Hausdorff S containing K, n(K, S) is
either an odd integer or ». Conversely, for every integer n there is an
S DK such that n(K, S,)=2n-+1 and there is also an S, DK such
that n(K, S,) = .

Denote by 2 the unit cell of C(K)*. 2 consists of all measures u
on K with total variation ||u/| =1 and it is compact Hausdorff in
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the w*-topology. The point at infinity of K will be denoted by « and
KN{ © } will be denoted by 4. For a& K we denote by ¢, the mea-
sure which gives mass one to the point « and is zero everywhere else.
Every u&Z can be represented as

= Du)tetu(@)tn el = L fuE@] + [u(=)] =1.

acA
Theorem 1 is an easy consequence of the following two lemmas.

LeMMA 1. Let n be an integer and let 2n—1 SN <2n-+1. Then there
s a w*-continuous map P from N2 into (2n—1)Z such that Ppo =, for
every aE K.

LEMMA 2. Let n be an integer and let 1 <2n-+1. Then there is no w*-
continuous map P from (2n+-1)Z into 72 such that Poo=¢. for every
aECK.

To derive Theorem 1 from these two lemmas we have just to ob-
serve that 9(K, S) <\ if and only if there is a continuous map F
from S into AZ (in the w*-topology) such that F(a)=¢. for aEK.
Thus, in particular, if S, =(2%+1)2 and if we consider K as a subset
of S, (by identifying «a €K with ¢.) then, by Lemma 2, (K, S,)
=2n+1, and if S, is a compactification of C(K)* (with the w*-
topology) then (K, S.) = .

PrROOF OF LEMMA 1. Let pu= 2 sca u(@)datu(®)p.; then m(K)
=D aea u(@) +u(x). We take P = P,Py, where P; and P; are defined

by
Pi(p) = p/max(l, u(K))
and

Pa) = 2 gu(@))ge + (1 - g(u(a))) bor

a€A acAd
where g is a continuous real-valued function on the line satisfying
0=sg( =1, g) =0it=ON+1)/2n+2), g(1)=1

Both P; and P, are w*-continuous on A2 and Pi¢o=Pp.=¢. for
every aE K. If uENZ and v =P, then yENZ and v(K) £1. It fol-
lows that there are at most # values of & such that y(a) > \+1)/(2n+2)
and, hence, || Pyy|| <2n—1. This concludes the proof of Lemma 1.

For the proof of Lemma 2 we need the following simple combina-
torial lemma.

LEMMA 3. Let A be a uncountable set and let n be an integer. For every
aE A let Y(a) be a subset of A whose complement is finite. Then there
are {a;}i in A such that a;EY(a;) for every i].



544 H. H. CORSON AND J. LINDENSTRAUSS [May

Proor. By induction on #. Assume the lemma holds for some z=1.
Pick a 1€ A. Since A~y(B) is finite for every 8 we can construct a
sequence A1 CA4:CA3C - - - of finite subsets of 4 with 4,= {/31}
such that all the inclusions are proper and such that & A4, for some
k implies that A~Y/(8) CArq1.

By the induction hypothesis there are {a,-}}', 1 in the uncountable
set A~U;.; Ay such that a;EY(e;) for every 25%j. Since N}, ¥(ow)
has a finite complement and since Uj., 4; is infinite there is an
an1in Upl; 4rsuch that w1 EP(e;) fori=1,2, - - -, n. The comple-
ment of Y(as41) is contained in Up_; A% and hence a;EY(aqy1) for
1=1, 2, - - -, n. Thus the lemma holds also for #-+1 and this con-
cludes the proof.

REMARK. Actually it is easy to prove that with the assumptions of
Lemma 3 there is an uncountable subset 4’ of 4 such that aEy(a/)
whenever a, &' €4’ and as%a’. We shall not, however, need this
stronger version of the Lemma.

ProoF oF LEMMA 2. Let 7 <2n41 and assume that there is a w*-
continuous map P from (2#+1)2 into 72 such that P¢.=¢. for
every a&E K. For oy, o, * * + , 0y1€E 4 put

May,ag,«*anyy — ¢a1 + ¢ag + s + ¢a,,+1 - ”¢w’
and
'Y"l'aiv" *1C0p+1 = -Pl‘al_.a;.- *ilp 1
Let ¢>0. We claim that for every a& A there is a subset () of 4
with 4A~y(a) finite such that By, By, - -+, BaEY¥() implies that

Ya,y.6a,- - a() > 1 — e

Indeed, if no such Y(c) exists we would have £, j=1, 2, - -,
k=1,2, -+, n,in 4 such that =B if ji>#j, and
(1) 'ya,plf,p,f,...,p"i(a) =1- €, ] = 1, 2, LN
However, pag,f sy, ....5,7 converges in the w*-topology to ¢, as j—

and, hence, by our assumption on P, Ya g/ s/, .. .87 must also tend w*
to ¢. and this contradicts (1).

We divide 4 into a sequence of disjoint uncountable subsets
{A" } ;1. By Lemma 3 there are, for every j, elements o€ 47,
k=1,2, ..., n+1, such that

ony EY(on,) if PisEhy, j=1,2,-
We have thus

Ei .
() Vauadoodp () >1—¢ E=1,2,--- , n4+1,7=1,2,3, -


YiW.--.-ln
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Since pag,af, - - -.ap+1 CONvVerges in the w* topology to ¢, as j— o we
get, by our assumptions on P, that, for sufficiently large 7,

(3) YVar,agh, - ranpy (K) < ¢(K) +e=14+e
For a j satisfying (3) we get easily (by using (2)) that
[¥ad.ag,-adis || Z 20+ 1 — @20 + 3)e,

and this is a contradiction if €is chosen so that 2n+1—(2n4+3)e>7.
This concludes the proof of Lemma 2 and, hence, of Theorem 1.

The method of proof of Lemma 2 can be used to prove results con-
cerning mappings into other compact convex sets besides sets of
measures. It is known that every compact convex set in a metrizable
locally convex space (e.g. the unit cell of a separable reflexive space
in the w-topology) is a retract of every compact space containing it
(cf. [2] and the references there). It was observed in [1] and [2]
that the unit cell of a nonseparable Hilbert space in the w-topology
does not have this property, since it can be embedded in the product
of uncountable copies of [0, 1], which is separable. Here we get the
following stronger result.

PROPOSITION 1. Let U be the unit cell of a nonseparable Hilbert space
and let N\>7=1. Then there is no w-continuous map P from NU into
7U such that Px=x for x& U.

The proof is very similar to that of Lemma 2. We just have to re-
place the measures pq,,...,q,4, Dy the points

xalvazv"'van = >\(eal + ea! + R + e“n)/\/n

in U (here # is an integer =\? and the {¢a}aea form an orthonormal
basis of the Hilbert space).

Proposition 1 holds also if U is the unit cell of a nonseparable I,
space, 1 £p < =, in the w*-topolog y, but it does not hold for the unit
cell of I, in the w*-topology.
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